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ABSTRACT

The aim of this study is to develop a material model for filled vulcanizates that is physically justifiable. This

model builds upon the established extended tube model and is incorporated into a finite element program. The

research demonstrates that the intrinsic deformation concept is inadequate for describing nonlinear deformation behav-

ior under the assumption of incompressible, isotropic materials. Consequently, an alternative approach is proposed,

employing a strain function rather than direct use of principal strains, to characterize reinforcement behavior. This

strain function aligns with the first invariant of the right Cauchy-Green strain tensor over a wide deformation range.

At minor deformations, the entanglements’ contribution is considered through an additional reinforcement term. The

novel reinforcement function is depicted as a sum of three elements, each representing reinforcement at different

strain levels: low, medium, and high. Experimental comparisons show that the Modified Extended Tube Model

(METM) effectively captures the stress-strain response of filled systems across all deformation levels. Furthermore,

the reinforcement function parameters, derived from fitting the METM to experimental data, offer a quantitative

assessment of the fillers’ reinforcing effects, while the extended tube model parameters reflect the network characteris-

tics. [doi:10.5254/rct.24.00021]

INTRODUCTION

Due to their special mechanical properties, which can be customized by combining

chemical and physical properties, rubber materials are indispensable in many technical

applications today. The optimization of properties of elastomeric systems has therefore been

intensively pursued in many fields, such as polymer chemistry, polymer physics, numerical

mechanics and calibration techniques. It is an ongoing field of research with recent

publications by e.g. Anssari-Benam et al.,1 Costecalde et al.2 or Wan et al.,3 to name just a

few.

A fundamental aspect concerns the constitutive characterization of elastomeric materials.

Over the past few decades, a multitude of formulations have been proposed (refer to, for

instance, Bergström4 for a comprehensive theoretical overview and Dal et al.5 as well as He

et al.6 for recent reviews on the subject). Many of these approaches represent sophisticated

phenomenological formulations for the strain energy function, while only a handful of models

are grounded in physical principles, specifically the molecular structure of the material.

Heinrich and Kaliske7,8 presented an extended approach of the “tube model”, which

allows the characterization of the mechanical behavior at large deformations due to

quantitative description of the finite extensibility of polymer chains. The extended tube model

has been implemented in finite elements and enables the calculation of complex deformations

of whole components based on molecularly defined network parameters as already assessed by

Marckmann and Verron.9 However, the extended tube model can currently only be used for

unfilled polymer networks. In practice, filled, cross-linked elastomers are used almost

exclusively due to their superior property profile. The simulation of the mechanical properties

of filled systems with commercially available programs such as Abaqus10 or Ansys11 is usually

carried out using purely empirically motivated model approaches. These include the Neo
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Hooke12 model, the models from Mooney-Rivlin,13,14 Ogden,15 Yeoh16 and several others. A

good summary can be found at Bergström.4 If the parameters of the respective models are

carefully determined, the results of the simulations are usually very close to the real process.

The finite element simulation is therefore a valuable and indispensable tool for the rapid and

cost-sensitive development of elastomeric components. The primary drawback of these

empirically motivated models is the inability to establish a correlation between the molecular

properties of filled, cross-linked elastomers and the properties of the components manufactured

from them. This implies that the outcomes of a finite element simulation can only be indirectly

applied to compound formulation or optimization.

Vilgis et al.17 developed an initial physically motivated model for filled systems, the so-

called dynamic flocculation model which is predicated on the fractal characteristics of

fillers.This model was subsequently refined and incorporated into finite element analysis by

Klüppel and Schramm.18 A alternative approach from Lorenz et al.19 is based on the methods

representative directions.

In this work, we present a novel methodology for analyzing polymer-filler interactions,

predicated on a modification of the Extended Tube Model (ETM) by incorporating a

deformation-dependent reinforcement function. This advancement can be viewed as an

extension of the framework proposed by Heinrich and Vilgis.20

Our method distinguishes itself from existing approaches by extracting the deformation-

dependent reinforcement directly from measurements, thereby obviating the need for

predefined models such as the dynamic flocculation model.

Additionally, we introduce an analytical representation of the reinforcement function, with

parameters that uniquely characterize the interactions between the filler and the polymer

network, whereas those of the extended tube model encapsulate the network properties. This

approach facilitates a quantitative differentiation between network properties and filler-filler

and filler-polymer interactions. We will elucidate how the Extended Tube Model, when

augmented with a reinforcement term, can be seamlessly integrated into finite element analysis

programs. This integration establishes a direct link between the microstructural components of

a filled polymer network and its resultant mechanical and dynamic-mechanical behaviors.

POLYMER PHYSICAL BACKGROUND

Heinrich and Kaliske8 derived the strain energy for the extended tube model as a function

of the chemical network density and the entanglements. They obtained the following

expression

w ¼ wC þ we ¼ GC

2

ð1� d2ÞðD2 � 3Þ
1� d2ðD2 � 3Þ þ ln 1� d2ðD2 � 3Þ

� �" #
þ 2Ge

b2
D�b � 3ð Þ (1)

for the energy density where

Dk ¼
X3
i¼ 1

kki (2)

ki represents the principal stretches with i ¼ 1, 2, 3. GC is proportional to the chemical network

density and Ge to the entanglement density. The parameter d describes the finite extensibility

of chain segments between adjacent chemical cross-links. If an infinite extensibility is

assumed, d ¼ 0 and Eq. 1 is reduced to Neo-Hookes relation. Dk corresponds for k ¼ 2 to the

1st invariant of the right Cauchy-Green tensor C. For k ¼ �b, Dk is utilized to characterize the
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contribution of the entanglements to the deformation of the network. The parameter b
(0 � b � 1) was introduced to considers the global rearrangements of cross-links upon

deformation21 and, as a result, the release of topological constraints. Heinrich and Kaliske8

used the data from Treloar12 to show that a value of b ¼ 0:2 is best suited to describe the

mechanical properties of vulcanized natural rubber.

If incompressibility J ¼ Q3
i¼ 1

ki ¼ 1 is assumed, the principal components of the stress ri

can be calculated using Eq. 3. In most literature, the undeformed cross-sectional area is used to

calculate the engineering stress Pi (1
st Piola-Kirchhoff stresses). ri denote the true principal

stresses (Cauchy stresses).

Pi ¼ ow
oki

¼ ri � k�1
i : (3)

A first description of reinforcing properties of the filler were derived by Guth and Gold22

by extending the hydrodynamic reinforcement.23,24 A general description of the reinforcing

properties of fillers is obtained by introducing a reinforcing function vðUÞ where U denotes the

volume fraction of the filler.

EðUÞ ¼ E0 � vðUÞ (4)

where vðUÞ ¼ 1þ 2:5Uþ 14:1U2. Domurath et al.25 demonstrated that the value of 14.1 in

the quadratic term is only valid under special conditions. They suggested a more general

approach where vðUÞ ¼ 1þ 2:5Uþ bU2. The parameter b then depends on the matrix

material as well as on the applied deformation.

Nonetheless, Eq. 4 only applies in the linear deformation range, i.e. in the limiting case of

small deformations (k ! 1). In order to use Eq. 4 also for larger deformations, several

authors4,26,27 have introduced the intrinsic deformation approach.28 In the concept of intrinsic

deformation, it is assumed that the filler cannot be deformed. The deformation of the chains in

the filled system Ki is then greater than the macroscopic deformation ki.

Ki � 1 ¼ ðki � 1Þ � vðUÞ (5)

However, this concept can only be used to a limited extent to describe the behavior of

filled systems at larger deformations. The reason for this is that larger macroscopic

deformations can cause negative deformations of the polymer chains K if isotropic and

incompressible behavior is assumed. This becomes plausible if one considers the special case

of uniaxial deformation of an isotropic and incompressible medium. For an elongation in the

z-direction, the relation between the macroscopic deformation ki of the sample and the

intrinsic deformation Ki of the polymer chains is described by Eq. 6 and Eq. 7.

Kz � 1 ¼ ðkz � 1Þ � vðUÞ (6)

Kx;y � 1 ¼ ðkx;y � 1Þ � vðUÞ (7)

Applying the assumption of incompressibility

kx � ky � kz ¼ 1 (8)

and isotropic behavior

ky ¼ kx (9)
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and combining this with Eq. 6 and Eq. 7, we can derive the deformation kz at which the

deformations Kx and Ky become less than zero.

kz >
vðUÞ

vðUÞ � 1

� �2

(10)

This cannot be realized, as even Ki ¼ 0 would require infinite compression. Negative

deformations of the polymer chains in filled systems could be avoided either by an additional

microscopic deformation condition or by abandoning the assumption of isotropic material

behavior. Neither approach is physically justifiable, as to our knowledge there are no

experimental findings that could justify such an approach.

ANALYTICAL DERIVATION OF THE STRAIN ENERGY DENSITY FUNCTION

We therefore propose a different approach, which we believe makes more physical sense.

In our approach, the strain is no longer amplified, but the strain function Dk (see Eq. 1).

~Dk � 3 ¼ vðU;DkÞ Dk � 3ð Þ (11)

On the one hand, this approach prevents the strain from becoming negative; on the other

hand, it leads to the reinforcement behavior described in Eq. 4 for the limiting case of small

deformations (see Eq. 20). This approach is already present in Bergström’s thesis.28 However,

it introduces only a constant reinforcement function that depends solely on the volume fraction

of filler. We expand upon Bergström’s approach by making the reinforcement function

explicitly dependent on the strain function vðU;DkÞ and the volume fraction of the filler.

The great advantage over the existing empirical models is that our approach allows the

separation of the filler-based effects from the nonlinear properties of the network by

introducing a strain-dependent reinforcement function.

A combination of Eq. 1 and Eq. 11 leads to the strain energy function of a filled network.

Eq. 12 shows the modified strain energy function of a filled network

wðUÞ ¼ wCðUÞ þ weðUÞ

¼ GC

2

ð1� d2ÞvðU;D2Þ D2 � 3ð Þ
1� d2vðU;D2Þ D2 � 3ð Þ
� �þ ln 1� d2vðU;D2Þ D2 � 3ð Þ

� �" #

þ 2Ge

b2
vðU;D�bÞ D�b � 3ð Þ

(12)

The deformation-dependent reinforcement function vðU;DkÞ can be determined experimentally.

For this purpose, stress-strain measurements have to be carried out under different conditions

(uniaxial, biaxial, and planar) for the filled and the unfilled system. It was shown

experimentally29 that fillers and in particular carbon black do not influence the cross-linking

density of the network. For this reason, the reinforcement function can be determined for each

deformation by minimizing the squared difference between the measured strain energy wMðUÞ
and the strain energy function wTðUÞ calculated with Eq. 12. For this purpose, the parameters

GC, Ge, d, and b are determined from the stress-strain curve of the unfilled system. These values

are then used to calculate the strain energy function wTðUÞ of the filled systems. In the next step,

the strain energy wMðUÞ is calculated from the measured stress-strain curves (under uniaxial,

biaxial or planar conditions) by a numerical integration.
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For each deformation k, the value of the reinforcement function vðU;DkÞ is now varied

until the minimum of the least square root of the measured strain energy density wMðUÞ and
the calculated energy density wTðUÞ is reached. In the experimental part, the numerical

determination of the reinforcement function vðU;DkÞ is demonstrated using the example of

two carbon blacks (N550 and N220) and four filler levels each.

ANALYTICAL DERIVATION OF THE PRINCIPAL STRESSES PI

The principal engineering stresses Pi can be calculated from Eq. 12 and Eq. 3. With the

abbreviations

vk ¼ vðU;DkÞ and _vk ¼ ovðU;DkÞ
oDk

(13)

one obtains

Pi ¼ PCi þ Pei

¼ owC

oki
þ owe

oki

¼ GC

2

1� d2

1� d2v2 D2 � 3ð Þ
� �2 � d2

1� d2v2 D2 � 3ð Þ
� � !

� _v2 D2 � 3ð Þ þ v2½ � � _D2

þ 2Ge

b2
� _v�b D�b � 3ð Þ þ v�b½ � � _D�b

(14)

for the principal engineering stresses. The reinforcement function vk is deliberately kept

general. This allows the most general possible characterization of the stress-strain behavior

of filled systems. Eq. 14 can be used for the general description of the principal stresses Pi

as well as for the description of an experiment under uni-axial, bi-axial or planar conditions.

For the calculation of the principal engineering stresses Pi the following relations can be

derived from Eq. 2.

Dk ¼
X3
i¼ 1

kki and _Dk ¼ k ki (15)

For an experiment carried out under uni-axial conditions, the following relationships apply for

deformation in the z-direction kz ¼ k; kx ¼ k�0:5 and due to incompressibility ky ¼ ðkx kzÞ�1
.

D2 ¼ k2 þ 2

k
; _D2 ¼ 2 k� 1

k2

� �
; D�b ¼ k�b þ 2 k

b
2 and _D�b ¼ b

k
b
2 � k�b

k

 !
(16)

When measuring under bi-axial conditions with a force acting in the x and y directions

(k ¼ kx ¼ ky and kz ¼ ðkx kyÞ�1
, the calculation of the parameters Dk and _Dk yields the

following expressions.

D2 ¼ 2 k2 þ 1

k4
; _D2 ¼ 4 k� 1

k5

� �
; D�b ¼ 2k�b þ k2b and _D�b ¼ 2 b

k2b � k�b

k

� �
(17)

Another possibility to characterize the stress-strain curves in the non-linear deformation range

is to measure under pure shear or planar tension. Bergström4 showed that both measurements yield
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comparable results for moderate deformations. Measurements under planar tension are much easier

to perform than measurements under pure shear. Therefore we discuss the nonlinear deformation

behavior in the experimental part on measurements performed under planar tension as well as uni-

axial and bi-axial conditions. For planar tension, the following relationships are found for the

parameters Dk and _Dk.

D2 ¼ k2 þ 1

k2
þ 1; _D2 ¼ 2 k� 1

k3

� �
; D�b ¼ k�b þ kb þ 1 and _D�b ¼ b

kb � k�b

k

� �
(18)

The behavior at small deformations can be described by the limiting case Dk ! 3. This

simplifies Eq. 14 for the limiting case of small deformations.

Pi ¼ PCi þ Pe1 ¼ GC

2
v2 _D2 þ 2Ge

b2
vb _D�b (19)

For the example of an uni-axial deformation, the combination of Eq. 19 and Eq. 16 yields

Hooke’s law with a reinforcement factor vðU;Dk ! 3Þ ! vðUÞ.

P ¼ GC vðUÞ k� 1

k2

� �
þ 2Ge

b
vðUÞ k

b
2 � k�b

k

 !
� 3 vðUÞ Gc þ Geð Þ e ¼ vð/ÞE � e (20)

Thus, the approach proposed by us in the limiting case of small deformations gives the

hydrodynamic amplification, or its general formulation (see Eq. 4).

Figure 1 shows the typical curve of the reinforcement function for a carbon black filled

compound (see sample C5 on table 1). These are discussed explicitly in the experimental

section as a function of the type and quantity of filler.

In the following, we would like to suggest a function that we propose for the quantitative

description of the deformation dependent reinforcement. This function is made up of three

components. For small deformations, a decrease in the reinforcement is observed, which we

describe using an exponential function. In the medium deformation range, often a maximum of

the reinforcement is observed, which we model using a modified Cole-Cole function. In the

case of large deformations, the reinforcement should tend asymptotically towards a constant

value, the hydrodynamic reinforcement.

FIG. 1. — Reinforcement vð/;DkÞ as a function of the deformation.
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The strain-dependent amplification can thus be described quantitatively, with vMax; v0; v1,

b, and f as parameters.

vkðxÞ ¼ vMax � 2 xb aþ 1ð Þ
1þ 2 a xb þ x2b

þ v0 e
�ax þ v1 with x ¼ Dk � 3

f

� �
anda ¼ cos

bp
2

(21)

The parameters vO and a
f characterize the decrease of the reinforcement at small strains,

the parameters f and vMax the position and height of the maximum of the reinforcement. The

decrease of the reinforcement at large deformations is characterized by the parameter b. At very
large deformations (Dk ! 1), the reinforcement approaches the value v1 asymptotically.

To calculate the principal engineering stresses Pi, the derivative of the reinforcement

function _vk according to the strain function Dk is required (see Eq. 21).

_vk ¼ ovk
oDk

¼ 1

f
vMax

2 b ðaþ 1Þ xb�1 1� x2bð Þ
1þ 2axb þ x2bð Þ2 � v0 a e

�ax

" #
(22)

For the limiting case of small deformations (x ! 0), the reinforcement function

asymptotically approaches a constant value of v1 þ v0. If a maximum in the reinforcement is

formed, it is reached approximately at a deformation of D � fþ 3 and has the value of vMax.

The equations derived so far form the basis for the implementation in a finite element program.

In our case, a ‘User-Defined Function’ was created in Abacus. The first results are discussed for

some of the materials which will be introduced in the following sections. The assumptions and

equations on which the implementation is based will be described in a subsequent article.

EXPERIMENTAL INVESTIGATIONS

To determine the reinforcement properties of carbon black using the modified extended tube

model METM, nine model compounds were prepared. The formulation details are provided in

Table 1. Natural rubber was selected as the base polymer. Each mixture was blended in a 1.5 l

internal mixer (GK1.5 Werner & Pfleiderer). Initially, the polymer was introduced, followed by the

addition of the filler, which was mixed for an additional 3 min at 50 rpm. Subsequently, sulfur and

accelerator were added on an open mill after the mixture was discharged. Test plates with a

thickness of 2 mm were vulcanized under pressure (200 bar) at 150 �C for 15 min from all mixtures.

UNFILLED REFERENCE SYSTEM

Compound C1 serves as the unfilled reference material used as a baseline for determining

the network parameters. The solid lines in Figure 2 depict the results of measurements under

TABLE I

COMPOSITION OF MODEL COMPOUNDS (UNIT OF VALUES IN PER HUNDRED RUBBER)

Ingredient C1 C2 C3 C4 C5 C6 C7 C8 C9

Natural rubber SVR CV60 100

Carbon Black N550 0 30 50 70 85 0

Carbon Black N220 0 30 45 60 75

Sulfur 4

CBS 1.4
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uniaxial (Figure 2a), biaxial (Figure 2b), and planar (Figure 2c) deformation. The dotted lines

represent the fitting of the measured data to the extended tube model (see Eq. 1).

The fitting was conducted simultaneously for the uniaxial, biaxial, and planar

measurements. The obtained parameters are summarized in Table 2. The parameter b was set

to 0.2 as suggested by Heinrich and Kaliske.8

The most significant deviations between the calculated and measured curves are observed

in the biaxial experiment. In this case, the measured forces exceed the calculated forces for

each deformation. Eberlein30 demonstrated that this discrepancy arises from stress

inhomogeneities occurring during the biaxial test. This issue could potentially be addressed

through an optimization process. However, we did not pursue this optimization due to the

differing objectives of our study. For the subsequent evaluation of the filled systems, we

employed the parameters listed in Table 2.

FILLED SYSTEMS

The Figures 3 and 4 show the results of the uni-axial, bi-axial and planar strain

measurements of the carbon black-filled samples C1 to C9.

The solid lines represent the measured data, while the dashed lines depict the calculated

curves. The calculated curves are based on fitting the measured data to the extended tube

model (see Eq. 14). In this process, the network parameters from Table 2 were adopted, with

FIG. 2. — Uniaxial (a), biaxial (b), and planar (c) tension measurements of the unfilled reference compound C1 and
the fitting result with the extended tube model.

TABLE II

RESULT OF THE FIT OF THE EXTENDED TUBE MODEL TO THE

MEASURED DATA

Parameter Fitted value

GC [MPa] 0:2ð60:03Þ
Ge [MPa] 0:54ð60:03Þ
d 0:124ð60:05Þ
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only the parameters of the reinforcement function varied. Overall, a very good agreement is

observed between the calculated and measured curves.

The fitting process enables the quantification of the reinforcement function. Table 3

presents the parameters of the reinforcement function, and Figure 5 illustrates the graphical

representation of the reinforcement function as a function of strain. A quantitative assessment

of the reinforcement behavior can be conducted by examining the parameters of the

reinforcement function. This can be effectively divided into several areas: reinforcement at

small strains (k ! 0), reinforcement in the range of moderate strains, and reinforcement in the

range of ultimate properties such as the elongation at break. For small strains (Dk ! 3), the

reinforcement function (refer to Eq. 21) approaches asymptotically the value (v ¼ v0 þ v1).

The left-hand diagram in Figure 6 illustrates this limiting value for the two fillers tested,

plotted against the filler’s volume fraction. It also depicts the hydrodynamic reinforcement

behavior. The notable enhancement in reinforcement with increasing filler volume fraction

FIG. 3. — Uni- (a), bi-axial (b), and planar tension (c) measurements of the carbon black filled compound
(N550) C2 � C4.

FIG. 4. — Uni- (a), bi-axial (b), and planar tension (c) measurements of the carbon black filled compound
(N220) C4 � C8.
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suggests the generation of filler-filler and filler-polymer interactions, likely due to the

formation of mechanically unstable filler-polymer-filler clusters.

The decline in reinforcement with increasing deformation in the range of smaller

deformations is characterized by the relation (refer to Eq. 21)

vkðDk ! 3Þ � v0 � e�a
fðDk�3Þ þ v1 (23)

The diagram on the right in Fig. 7 illustrates the decay parameter a
f as a function of the

volume fraction of the filler. A value close to one is observed for all filling levels and

regardless of the filler.

A local maximum of reinforcement is observed in the range of medium deformation.

The maximum reinforcement vMax is depicted in the middle diagram of Fig. 6 as a function

of the filler’s volume fraction. The deformation at which the reinforcement reaches its local

maximum can be determined from the parameter f, illustrated in the left-hand diagram of

Fig. 7.

It’s notable that the position of the local maximum decreases linearly with increasing filler

volume fraction and lies within a range of 100% to 250% for technically viable filling ratios

between 20 phr and 80 phr. A comparable behavior is observed for the two fillers under

investigation.

TABLE III

PARAMETERS OF THE REINFORCEMENT FUNCTION V

C2 C3 C4 C5 C6 C7 C8 C9

UF 0.23 0.33 0.41 0.46 0.23 0.31 0.38 0.43

vMax 1.5 2.9 3.8 4.2 1.9 2.7 3.4 3.6

f 10.1 6.5 4.7 4 8.7 8.4 6.4 4.9

b 1 1 1 1 1 1 1 1

v0 1.9 2.3 4.1 5.0 2.4 3.5 4.9 6.3

a 8.3 6.0 4.8 4.2 10.0 8.4 7.7 6.2

v1 0.4 0.7 0.8 1.1 0.6 0.2 0.1 0.9

FIG. 5. — Reinforcement function vkðkÞ for the carbon black N550 (a) and N220 (b).
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Even within the medium deformation range, the reinforcement remains significantly

higher than the purely hydrodynamic reinforcement (refer to the middle diagram in Fig. 6).

This suggests that even in this deformation behavior, the reinforcement is predominantly

influenced by the deformation process and the breakup and reformation of filler-polymer-filler

clusters.

Given that the determination of the reinforcement at large deformations is constrained by

sample fracture, discussing the parameter v1 as a function of filling level lacks meaningful

quantitative analysis due to the associated measurement error. Instead, we regard the

reinforcement at elongation at break as a more meaningful measure of the reinforcement at

large deformations. This is depicted in the diagram on the right in Fig. 6.

The reinforcement at elongation at break is still higher than the hydrodynamic

reinforcement. This means that even at high deformations, the filler network built from filler-

filler and filler-polymer interactions cannot be completely degraded. Comparing the two

carbon blacks N220 and N550, one finds significant differences both at small and large

deformations. The more active carbon black N220 exhibits higher reinforcements in both

areas.

In the left diagram of Figure 7, the term responsible for the decrease in reinforcement at

small deformations (see Equation 23), is shown as a function of the filler volume fraction.

FIG. 7. — Parameters f and a
f of the reinforcement for small, medium, and high deformation.

FIG. 6. — Reinforcement v for small, medium, and high deformations.
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Within the limits of measurement accuracy, it is found that this term is independent of the

amount and type of filler and assumes a value of a
f � 1.

In the right diagram of Figure 7, the position of the maximum reinforcement as a function

of the filler volume fraction is depicted. For better understanding, the deformation for the case

of uniaxial deformation is plotted on the right axis. For both fillers, an almost linear shift of the

maximum reinforcement to smaller deformations is observed with increasing filler content.

In conclusion, it must be stated that a quantitative interpretation of the data presented in

Figures 6 and 7 poses a challenge. Further investigations involving a broader array of fillers

are required to draw generalizable conclusions. Nonetheless, the correlations identified thus far

suggest that the proposed description of reinforcement behavior via a reinforcement function

provides a solid foundation for the quantitative assessment of the mechanical properties of

filled elastomers. It can be postulated that the parameters of the reinforcement function

facilitate a correlation between the characteristics of the mechanically unstable filler clusters

induced by filler-filler or filler-polymer interactions and the macroscopic mechanical

properties.

To demonstrate that the effects discussed are indeed solely caused by the filler, as well as

filler-filler and filler-polymer interactions, cyclic measurements were conducted on all

samples. This type of measurement was first published by Mullins [Mullins, 1969].

In the presented example, S2 rods from the samples were deformed 10 times at 80% of the

elongation at break (see the left diagram in Figure 8). The value of 80% was chosen for

practical reasons. Experience shows that the samples do not tear during a multiple cyclic

deformation when subjected to deformations smaller than to 80% of the elongation of break.

After the tenfold cyclic deformation, the S2 samples were removed and remeasured. This is

because the thickness and length of the samples can change significantly after cyclic

deformation, depending on the formulation of the samples. Finally, another tensile test until

failure is conducted on the cyclically pre-deformed samples. The results of these

measurements for the unfilled sample C1 and the filled sample C5 are shown in the right

diagram of Figure 8. For the unfilled sample C1, the stress-strain behavior changes only

slightly before and after cyclic loading, while the effect on the filled sample C5 is significant.

This altered behavior due to cyclic deformation can be explained solely by the influence of the

filler. That is, the clusters formed by filler-filler and filler-polymer interactions are deformed

and broken down during cyclic deformation and can partially reform through flocculation.

FIG. 8. — Stress-strain curves of a filled (C5) and unfilled (C1) sample before, during (a) and after (b) a 10 fold cyclic
deformation at 80% of the elongation at break.
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The cyclic experiments were conducted on all filled systems (C2 to C9). Subsequently, the

measurement curves were fitted with the METM model, without altering the parameters of the

polymer network Ge, GN, d, and b. This is justified since the cyclic deformation has no or only

a negligible small influence on the mechanical behavior of the unfilled sample (see right

diagram in 8).

As a result of fitting the cyclically pre-deformed tensile-strain data with the METM

model, the reinforcement function for each sample can be calculated. This allows for a detailed

analysis of the material behavior under cyclic loading conditions. Thus, with the METM

model, the Mullins effect can be quantitatively described. The introduction of the

reinforcement function allows for a quantitative description and interpretation of the effect of

cyclic deformation on filler-filler and filler-polymer interactions.

In Figure 9, the reinforcement functions of all cyclically pre-deformed samples are

summarized. Comparing this with the reinforcement functions of the initial, unaltered

samples (see Figure 5), it is observed that the reinforcement of the pre-deformed samples is

only increased when subjected to strain levels at or beyond the maximum deformation of

the cyclic loading (here 80% of the elongation of break). The dotted lines in Fig. 9

represent the maximum deformation vðkÞ ¼ vcycleMax
during the cyclic pre-deformation. At

smaller deformations, a nearly constant reinforcement is achieved through the cyclic pre-

deformation.

Our measurements substantiate the hypothesis that reinforcement in filled elastomers can

be attributed to mechanically unstable filler clusters, which emerge from interactions among

fillers and between fillers and the polymer matrix. The larger the filler cluster, the higher the

reinforcement at small deformations. Larger clusters are more fragile and therefore break at

lower strains. Deformation induces a dynamic equilibrium of breaking and reforming filler

clusters, shifting towards smaller cluster sizes with increased deformation. During cyclic

deformation, the maximum cluster size is governed by the largest deformation, denoted as

kcyclMax. Subsequent cyclic deformations lead to a stable distribution of filler clusters, with a

maximum cluster size dependent on the largest deformation. The METM model represents this

with a reinforcement function that remains constant up to the maximum cyclic deformation,

expressed as vkðkÞ ¼ vðkcyclMaxÞ for k � kcyclMax.

FIG. 9. — Reinforcement function vðkÞ for the carbon black N550 (a) and N220 (b) after a 10 fold cyclic
pre-deformation.
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OUTLINE FE IMPLEMENTATION

This section sets basic requirements for a 3D finite element (FE) implementation of the

METM expressed by strain energy function Eq. 12. Since the incompressibility constraint

J :¼ detF ¼ 1 cannot be explicitly fulfilled for a 3D continuum, an extension of the strain

energy function wðUÞ is introduced that allows the description of compressible material behavior:

wðUÞ ¼ wC þ we þ GðJÞ

¼ GC

2

ð1� d2ÞvðU;D2Þ D2 � 3ð Þ
1� d2vðU;D2Þ D2 � 3ð Þ
� �þ ln 1� d2vðU;D2Þ D2 � 3ð Þ

� �" #
þ 2Ge

b2
vðU;D�bÞ D�b � 3ð Þ þ GðJÞ

(24)

An initially arbitrary function G(J) in dependence of Jacobian J describes the compressible

part. Due to physical constraints further limitations hold with respect to G(J) and wðUÞ. The
strain energy function needs to fulfill the following limits:

lim
J!0

wðUÞ ! þ1 and lim
J!þ1

wðUÞ ! þ1: (25)

Additionally, wðUÞ must be zero in the unloaded reference configuration. As shown in

literature (Marsden and Hughes,31 Ciarlet32) the limits defined in Eq. 25 are essential for the

existence and uniqueness of solutions derived from hyperelastic material models.

It should be mentioned that FE concepts accounting for compressible material behavior

such as Kaliske and Heinrich8 could be applied alternatively.

To fulfill Eq. 25, the compressible part G(J) in Eq. 24 must be convex. In literature

(Ciarlet,32 Ogden33) several Ansatz functions can be found that fulfill this requirement. For the

following derivations a specific but admissible form of G(J) is chosen:

GðJÞ ¼ �j ln J þ K
4
ðJ2 � 1� 2 ln JÞ: (26)

K in Eq. (26) can be interpreted as Lamé–constant and the constant parameter j is defined as:

j ¼ GCð1� d2ÞvðD2 ¼ 3Þ � 2

b
GevðD�b ¼ 3Þ

� �
: (27)

For modeling incompressible material behavior with Eq. (24) by using Eq. (26), the

Lamé–constant K can be interpreted as penalty–parameter, i.e., for sufficiently large values of

K, the term in brackets tends to zero in Eq. (26), which is corresponding to the

incompressibility constraint J ¼ 1. Eventually, the strain energy density function wðUÞ for FE
implementation is given in its final form by employing Eq. (26):

wðUÞ ¼ GC

2

ð1� d2ÞvðU;D2Þ D2 � 3ð Þ
1� d2vðU;D2Þ D2 � 3ð Þ
� �þ ln 1� d2vðU;D2Þ D2 � 3ð Þ

� �" #
þ 2Ge

b2
vðU;D�bÞ D�b � 3ð Þ � j ln J þ K

4
ðJ2 � 1� 2 ln JÞ

(28)

By means of Eq. (28) the principal stresses can be derived in a similar manner as already shown

in section “Analytical derivation of the principal stresses Pi”. If a FE implementation in Lagrangian

description is pursued, the 2nd Piola-Kirchhoff stress tensor S is required. It can be derived from

wðUÞ by the following relation (refer to e.g. Truesdell and Noll34 for further information):
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S ¼ bSðFÞ ¼ 2
owðUÞ
oC

(29)

The corresponding stress increment DS in the reference configuration is given as follows:

DS ¼ D 2
owðUÞ
oC

� �
¼ L 1

2
DC

with L :¼ 4
o2wðUÞ
oC� oC

:

(30)

The stress increment DS is required for the calculation of the consistent linearization of
the weak form of equilibrium that underlies the FE implementation. The nonlinear equations in
the weak form of equilibrium result from the derivation of stresses from Eq. 28 in Eq. 29. for
more information on the subject, the interested reader is referred to Wriggers.35

In an equivalent way to strain tensors, a spectral decomposition can be given for stress

tensors. For the 2nd Piola-Kirchhoff stress tensor this means:

S ¼
X3
i¼ 1

Si Ni � Ni: (31)

Si denote the principal stresses of the 2
nd Piola-Kirchhoff stress tensor, whereas Ni indicate

unit vectors of an orthogonal eigenvector base. Numerically, the eigenvectors Ni are
determined by solving the following eigenvalue problem:

ðS� Si 1ÞNðiÞ ¼ 0: (32)

More elaborate is the representation of the material tensor L from Eq. 302 in principal

axes. In Chadwick and Ogden36 the related form was derived as:

L ¼
X3
i¼ 1

X3
j¼ 1

Liijj Ni � Ni � Nj � Nj

þ 1

2

X
i 6¼j

Lijij ðNi � Nj � Ni � Nj þ Ni � Nj � Nj � NiÞ: (33)

In accordance to Eq. 29 and Eq. 30, the correspoding components in principal directions

are obtained as:

Si ¼ 2
owðUÞ
oCi

; Liijj ¼ 2
oSi
oCj

; Lijij ¼ Si � Sj
Ci � Cj

: (34)

Eqs. 34 can further be modified in terms of principal stretches ki by employing:

Ci ¼ k2i ) oð:::Þ
oCi

¼ 1

2 ki

oð:::Þ
oki

(35)

and therefore

Si ¼ 1

ki

owðUÞ
oki

; Liijj ¼ 1

kj

o
okj

1

ki

owðUÞ
oki

� �
; Lijij ¼ Si � Sj

k2i � k2j
: (36)

It must be noted that due to symmetry of the 2nd Piola-Kirchhoff stress tensor S and the

right Cauch–Green tensor C as well as the elastic potential character of the strain energy

function wðUÞ, the following symmetry conditions must hold for the material tensor L:
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Lijkl ¼ Ljikl ¼ Lijlk ¼ Lklij: (37)

For the special case of two or three principal stretches ki having an identical value, the

components Lijij are indefinite in Eq. 36. By means of the L’ Hospital rule, a limit value

formation is performed by Chadwick and Ogden:37

lim
ki!kj

Lijij ¼ 1

2
ðLiiii � LiijjÞ: (38)

This completes the derivation of the material tensor L in principal axes and the outline of

a Lagrangian finite element description and implementation of the material model

characterized by the strain energy function in Eq. 28. Since stresses and material tensor are

given in principal axes directions, a transformation from arbitrary strain and stress states to

principal axes must be performed first. After computing the principal stresses and the components

of the material tensor as shown above, a return transformation must follow. The corresponding

transformation procedure is explained in, e.g. Reese and Wriggers.38 For the subsequent numerical

examples, the FE implementation was done within Abaqus Standard10 as user material subroutine.

As numerical example for the METM, the uni-axial tension experiment is computed for

vulcanizates of the unfilled C1 and the filled C3 compounds as reported in table 1. For the FE

simulation the material parameters are chosen as given in table 2 (C1 and C3) and table 3

(reinforcement of C3), respectively. The Lamé–constant in both cases is set to K ¼ 104. The

numerical results in Figure 10 replicate the calibrated data for unfilled and filled vulcanizates

as reported for C1 in Figure 2 ðaÞ. It should be noted that due to the quasi-incompressible

material behavior of the unfilled and filled rubber materials, an hybrid finite element

formulation for linear 8-node brick elements was chosen.

The simulated stress-strain curves depicted in Figure 10 can be achieved from different FE

models that can ensure an homogeneous stress state in uni-axial tension. Figure 11 depicts two

admissible FE models. In Figure 11 ðaÞ just a single element is used with boundary conditions

enabling an uni-axial tension stress state. As alternative a complete testing specimen could be

modeled according to the experimental setup as shown in Figure 11 ðbÞ. The red color in the

narrow part of the probe indicates that the same stress in loading direction is achieved as in

Figure 11 ðaÞ but at a much higher computational cost. However, the model in Figure 11 ðbÞ
cam also analyze inhomogeneous stress states in the testing specimen near the clamping plates,

if these are of any interest.

SUMMARY AND OUTLOOK

The objective of our research was to develop a material model for filled vulcanizates that

is physically motivated. This model is based on the extended tube model and has been

integrated into a finite element program.

We have demonstrated that the concept of intrinsic deformation cannot be utilized to

describe the nonlinear deformation behavior when assuming incompressible, isotropic

material behavior. We suggest an alternative method where the principal strains are not

directly used, but rather a strain function Dk is employed to characterize the reinforcement

behavior. The reinforcement vkð/;DkÞ is then dependent on this function and the filler’s

volume fraction. The strain function Dk corresponds to the first invariant of the right

Cauchy-Green tensor C across a broad range of deformations. It is only at small

deformations that the contribution of the entanglements must be accounted for by an

additional reinforcement term v�bðU;D�bÞ.
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FIG. 10. — Stress-strain curves at initial uni-axial tension loading for C1 and C3 vulcanizates.
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We have shown that the reinforcement function can be expressed as the sum of three

components that describe the reinforcement at low, medium, and high strains. Comparison

with experimental data revealed that the Modified Extended Tube Model (METM) is highly

effective in describing the stress–strain behavior of filled systems throughout the entire range

of deformation. Moreover, the parameters of the reinforcement function, as determined by

fitting the METM to experimental data, can be used to quantitatively describe the reinforcing

behavior of the fillers employed.

By analyzing cyclic pre-deformed stress-strain data, we could demonstrate that the

parameters of the reinforcement function uniquely characterize the properties of the filler,

whereas those of the extended tube model represent the network properties. This indicates that

our methodology allows for a quantitative differentiation between network properties and

filler-filler and filler-polymer interactions.

Ultimately, we demonstrated that the METM can be integrated into a finite element (FE)

routine by incorporating a function that characterizes compressibility, considering the

reinforcement function.

Finite element simulation tests of a uniaxial tensile test revealed a close correlation

between the simulated and experimental tensile strain curves for both unfilled and filled

samples. This convincingly illustrates that the METM approach, which is grounded in physical

principles, is highly effective for simulating filled elastomer systems. Looking forward, we aim

to enhance the METM model to enable it to capture the cyclic deformation behavior observed

during repeated cyclic loading.
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FIG. 11. — Von Mises stress distribution in FE models for uni-axial tension loading of C3 vulcanizate at identical
deformation state; (a) single element, (b) discretization of testing specimen.

222 RUBBER CHEMISTRY AND TECHNOLOGY, Vol. 97, No. 3, pp. 205–224 (2024)

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-07-31 via free access



REFERENCES

1A. Anssari-Benam, A. Bucchi, C. O. Horgan, and G. Saccomandi, Assessment of a new isotropic hyperelastic constitutive

model for a range of rubberlike materials and deformations. Rubber Chemistry and Technology. 95, 200–217 (2021).
2L. Costecalde, A. Leygue, M. Coret, and E. Verron, Data-driven identification of hyperelastic models by measuring

the strain energy density field. Rubber Chemistry and Technology. 96, 443–454 (2023).
3X. Wan, Y. Zhang, Q. Zhang, L. Zhang, and F. Li, User subroutines platform development for rubber hyperelastic con-

stitutive models and its application in finite element analysis. Computational Materials Science. 237, 112885 (2024).
4J. Bergström,Mechanics of Solid Polymers; Elsevier, (2015).
5H. Dal, K. Acikgöz, and Y. Badienia, On the Performance of Isotropic Hyperelastic Constitutive Models for Rubber-

Like Materials: A State of the Art Review. Applied Mechanics Reviews. 73, 020802 (2021).
6H. He, Q. Zhang, Y. Zhang, J. Chen, L. Zhang, and F. Li, A comparative study of 85 hyperelastic constitutive models

for both unfilled rubber and highly filled rubber nanocomposite material. Nano Materials Science. 4, 64–82 (2022),

Trends in Nanomaterials and Nanocomposites: Fundamentals, Modelling and Applications - Part A.

7G. Heinrich, and M. Kaliske, Theoretical and numerical formulation of a molecular based constitutive tube-model of

rubber elasticity. Computational and Theoretical Polymer Science. 7, 227–241 (1997).
8M. Kaliske and G. Heinrich, An extended tube-model for rubber elasticity: statistical-mechanical theory and finite ele-

ment implementation. Rubber Chem. Tech., 72, 603–632 (1999).
9G. Marckmann and E. Verron, Comparison of Hyperelastic Models for Rubber-Like Materials. Rubber Chemistry

and Technology. 79, 835–858 (2006).
10Abaqus. https://www.3ds.com/products/simulia/abaqus.

11Ansys. https://www.ansys.com.

12R. G. Treloar, The Physics of Rubber Elasticity; Clarendon Press, (1975).
13M. Mooney, A theory of large elastic deformation. Journal of Applied Physics. 11, 582–592 (1940).
14R. Rivlin, Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philosophical

Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 241, 379–397 (1948).
15R. W. Ogden, Non-linear elastic deformstions; Dover Publications, (1997).
16O. Yeoh, Some forms of the strain energy function for rubber. Rubber Chem. Tech., 66, 754–771 (1993).
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