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ABSTRACT

For so-called type-A polymer chains having electrical dipoles aligned parallel along their backbone, the large-scale
chain motion over the end-to-end distance results in not only viscoelastic but also dielectric relaxation. These two relaxation
processes detect the same motion but with different averaging moments, which enables us to experimentally resolve some
details of the chain dynamics through comparison of viscoelastic and dielectric data of type-A polymers. For a typical type-A
polymer, high-cis polyisoprene (PI), results of such an experimental approach are summarized to discuss characteristic
features of an entanglement-loosening process (constraint release and/or dynamic tube dilation process) resolved from the
data comparison. [doi:10.5254/rct.19.80388]
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[. INTRODUCTION

Needless to say, flexible polymer chains exhibit active thermal motion at temperatures well
above their glass transition temperature (7). This thermal motion, occurring in various length
scales spanning from the monomeric bond length to the end-to-end distance of the whole chain
backbone, is the origin of macroscopically observed relaxation processes, for example,
viscoelastic and dielectric processes.'? These processes average the same thermal motion of
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FIG. 1. — Schematic illustration of the chain and subchain.

the chains but in different ways, which enables us to experimentally resolve some details of the
chain dynamics through comparison of those processes. For example, in short time scales,
comparison of viscoelastic and dielectric data may allow us to resolve the chemical group(s)
involved in the local relaxation. The dielectric relaxation is activated mostly by motion of polar
groups, whereas the viscoelastic relaxation is essentially irrelevant to the polarity, so that
comparison of the dielectric and viscoelastic relaxation intensities provides us with a clue for
specifying the chemical group(s) responsible for the observed relaxation. For example, the beta
relaxation of poly(methyl methacrylate) (PMMA) is detected in both viscoelastic and dielectric
data, but the relaxation intensity is much larger (compared to the alpha relaxation) in the
dielectric data, which suggests that the rotational motion of the COOCHj; group (coupled with
local torsion of the backbone) is the origin of the beta relaxation of PMMA..*

The above example shows that the local relaxation in the length scale of monomeric bonds
sensitively reflects the chemical structure of the polymer chain. In contrast, the global (large-scale)
relaxation over the end-to-end distance of the chain backbone is rather insensitive to the chemical
structure'* (except for T, that determines the friction factor for the global relaxation).
Consequently, the global relaxation is universal for a wide variety of chemically different
polymers and has been considered to be described by only a few parameters."* For example, the
linear viscoelastic terminal relaxation of entangled, monodisperse linear polymers is described by
the entanglement plateau modulus Gy and the terminal relaxation time T (~ 1.N>-%), with 1, and N
being the Rouse relaxation time of an entanglement segment and the number of those segments per
chain, respectively.*”

For molecular description of the entanglement relaxation, this universality allows us to
divide the chain backbone into “‘subchains,” as schematically illustrated in Figure 1. In general,
we can use subchains of any size in description of the flexible chain dynamics, given that each
subchain contains a sufficiently large number of Kuhn segments (to behave as a flexible unit)
and is internally equilibrated (through motion of those segments) in a focused time scale.’
Because of this freedom in the choice of subchain, the entanglement segment, having a known
molecular weight M, and sustaining the plateau modulus, is conveniently used in literature (and
in this article) as the subchain when our focus is placed on the chain dynamics in a length scale
larger than the entanglement length.'** Then, the chain backbone is expressed as a sequence of
N subchains (N = M/M, with M being the chain molecular weight), and the dynamics is
described as the time evolution of the subchain bond vectors u(n,f), with n being the subchain
index (0 < n < N). Specifically, in the linear viscoelastic regime, those subchains behave as
Gaussian chains, and their relaxation modulus G(f), measured after imposition of a small step
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shear strain v at time 0, is expressed in terms of the shear component of the dyadic of u. In a
continuous treatment, this expression reads’*?

Gor—l(”“T)lexmn%mJ»ﬂn (1)

Y\ @

where o = <u2>eq (average at equilibrium), v is the chain number density, kg and T indicate the
Boltzmann constant and absolute temperature, and (), stands for the average taken for all
chains under the strain. Equation 1 is equivalent to the stress-optical rule® at sufficiently long
times where each subchain is internally equilibrated.

A brief comment may need to be made for a molecular meaning of Eq. 1."* At equilibrium, the
subchains in a polymeric material are isotropically oriented (and in the Gaussian state) so that their
entropic tensions are balanced in all directions. Thus, the material exhibits no macroscopic stress
o(t) in an undeformed, equilibrium state at + < 0. The step strain distorts this orientational
distribution of the subchains to disrupt the tension balance, and an unbalanced part of the tension
reflecting the anisotropy of the subchain orientation is observed as the macroscopic G(#). For the
shear strain considered here, the factor (u,(n,f)u,(n,t)) (shear component of the dyadic (uu))
specifies the isochronal orientational anisotropy of n-th subchain at time 7, and 6(¢) (= yYG(?)) is
expressed as a sum of this factor for all subchains, as shown in Eq. 1. Correspondingly, the
relaxation of G(f) reflects decay of the orientational anisotropy of the subchains occurring through
their thermal motion.

The same motion of the subchains also activates dielectric relaxation, given that the subchains
have so-called type-A dipoles parallel along the chain backbone.” Specifically, for type-A linear
chains without dipole inversion, amicroscopic polarization of the chain is proportional to its end-to-
end vector R(r)= fo u(n,f)dn (cf. Figure 1). Thus, the dielectric relaxation function F(#), measured
after imposing a weak electric field E for—° <t < 0 in y direction and removing the field at t=0, is
expressed in terms of the y component of the subchain bond vector u(z,f) as®

N
FO =5 [ malo(o.0)dn @)
0
In Eq. 2, mq is the magnitude of dipole per unit length of the chain backbone, and a factor mgqu,(n,f)
denotes the polarization of the n-th subchain at time . () ; stands for the average taken for all chains
during the relaxation process after removal of the electric field, and the integral in Eq. 2 gives the
average polarization of the type-A chain.

Comparing Egs. 1 and 2, we note that the viscoelastic and dielectric relaxation processes of
type-A chains detect the same motion of the chain (the dynamics of u) but with different averaging
moments, the second- and first-moment averages of u at time ¢. This difference enables us to
experimentally resolve some details of the global dynamics of the type-A chain through comparison
of the viscoelastic and dielectric data. For convenience of this comparison, this article uses an
expression of the normalized dielectric relaxation function ®(#) deduced from the fluctuation—
dissipation theorem, 1.2.8

F(t IR
(I)(t)_F((O)) = W/o /0 (u(n,t) -u(n’,0)).,dndn’ (3)

where F(0) is the initial value of F(r), and ("‘}eq stands for the average taken at equilibrium where all
chains have an isotropic Gaussian conformation dynamically fluctuating with time. (This @(r)
represents the first-moment average of u(n,t) at time ¢, as is the case also for F(¢).) Equations 2 and 3
are rigorously equivalent to each other, but the Gaussian feature underlying Eq. 3 is more
convenient, compared to the oriented conformation (created by the electric field) considered in Eq.
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2, for analyzing the chain dynamics. Thus, in this article, the comparison of viscoelastic and
dielectric data of entangled type-A polymer is mainly made for ®(¢) described by Eq. 3 and the
normalized viscoelastic relaxation function, p(#) = G(7)/Gx with G(¢) given by Eq. 1. (The
fluctuation—dissipation theorem gives an expression of (f) in terms of u at equilibrium® [that
corresponds to Eq. 3], but this expression is not used in this article.)

We find a considerable variety of type-A chains that include poly(propylene oxide),
poly(phenylene oxide), poly(e-caprolactone), and high-cis polyisoprene.'® Nevertheless, for the
first three polymers, we note some difficulties in the dielectric measurements in a melt state: in
general, the measurements at high temperatures (7)) are disturbed by a direct current conduction due
to ionic impurities so that the type-A polymer to examine is desired to behave as an amorphous melt
at low 7. Namely, the polymer is desired to have a low T, (and a low melting temperature if it is
semi-crystalline). The first three in the above list are not very convenient from this experimental
viewpoint. In contrast, synthetic polyisoprene (PI), obtained from living anionic polymerization in
non-polar solvents, is rich in the cis microstructure (cis-1,4:trans-1,4:vinyl-3,4 =~ 80:15:5)11 to
have the type-A dipole of detectable magnitude, and stays as an amorphous melt even at low T
because it does not crystallize and has low T, (=270 °C). Furthermore, for the synthetic PI, samples
of various topological architectures (such as a star-branched architecture) with a narrow molecular
weight distribution can be prepared rather easily through coupling of living PI anions. In addition,
PI chains have only weak (though detectable) type-A dipoles, so that their dynamics is negligibly
affected by the dipole—dipole interaction and coincides with that in a typical, non-polar amorphous
melt. (PI also has the type-B dipole perpendicular to the chain backbone,'” but this dipole is also
weak, thus not disturbing the amorphous melt dynamics.)

Because of these advantageous features of PI, the slow dielectric relaxation reflecting the
global chain dynamics has been extensively examined mostly for PI''**" and comparison of the
viscoelastic and dielectric data has revealed some details of the dynamics. This review article adopts
an experimental viewpoint as much as possible to focus on the details of the entanglement-
loosening mechanism resolved from the data comparison®*~** mainly for entangled linear and star
PI. (This experimental approach is unique to the authors’ group, and no similar approach is found in
literature.) In relation to this mechanism, comparison between chemically different polymers (PI
and polystyrene), not fully discussed in literature, is also presented.

Throughout this article, the sample code number indicates the molecular weight. For example,
PI1626k and PI 1.1M stand for linear PI samples with M =626 X 10>and 1.1 X 106, respectively, and
PI (80k)g is a six-arm branched star PI sample with the arm molecular weight of M, =80 X 10°.

II. RESULTS AND DISCUSSION
A. RELAXATION MECHANISMS IN TUBE MODEL

For a given chain (probe) in an entangled system, surrounding chains behave as uncrossable
objects. In the tube model widely used as a basic framework for describing the dynamics of such a
probe, a topological constraint for the probe motion due to those objects is expressed as an
impermeable tube surrounding the probe, and the probe is considered to move in the tube having a
diameter identical to the entanglement length a. (The a corresponds to the entanglement plateau
modulus; Gy < cla?, with ¢ being the mass concentration of the chains.) In this molecular picture,
the relaxation is equivalent to thermal escape of the probe from the tube at time 0: namely, the
orientational anisotropy and memory shown in Egs. 1 and 3 vanish on this escape.

In the classical tube model not considering motion of the tube-forming chains, this escape
occurs through reptation (one-dimensional curvilinear diffusion along the tube) for the linear probe
and through arm retraction (contraction along the tube) for a star probe;'** see Figure 2. The
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FIG. 2. — Schematic illustration of representative relaxation mechanisms considered in the tube model.

contour length of the linear probe measured along the tube fluctuates with time, and this mechanism
(not illustrated in Figure 2) reduces the effective diffusion length of the probe to accelerate the
relaxation.">**! A refined tube model considers motion of the tube-forming chains to introduce the
constraint release (CR) mechanism that allows local hopping of the probe beyond the tube
wall;'**? see Figure 2. This CR mechanism introduces a multi-chain nature of the entanglement
relaxation into the tube model. Accumulation of such local CR processes effectively widens the
tube diameter.'>** This mechanism is referred to as dynamic tube dilation (DTD).

B. TEST OF FIXED TUBE MODEL

For the reptation, contour length fluctuation (CLF), and arm retraction mechanisms occurring
in the absence of CR/DTD, we can formulate the time evolution of the bond vector u of the
entanglement segment (subchain) appearing in Egs. 1 and 3 to calculate the normalized viscoelastic
and dielectric relaxation functions, |(f) (= G(f)/Gyn) and O(7). Comparing the calculated p(¢) and
®(r) with data, we can test validity of the fixed tube models for real entangled polymers. However,
this type of test requires us to consider all possible modes of chain motion simultaneously occurring
in the fixed tube; for example, reptation and CLF may not additively contribute to 1(¢), (i.e., notin a
way considered in some models)."? In addition, we may have some freedom to adjust model
parameters in the test. Thus, direct comparison between the model calculation and data is not so
easily conducted.

In contrast, comparison of viscoelastic and dielectric data allows us to unequivocally test the
fixed tube model. In this model, a subchain at time ¢ staying in the surviving portion of the initial
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tube preserves the orientational anisotropy and memory of the other subchain that was located at the
same position in the initial state (time 0), as can be easily noted in Figure 2. Then, the normalized
relaxation functions are identical to the survival fraction of the initial tube ¢() irrespective of the
details of the conformational changes between the times 0 and ¢,

w(t) = ®(t) = ¢(¢) for fixed tube model 4)

Equation 4 gives a simple relationship between the normalized storage modulus G'(®)/Gy and the
normalized decrease of the dynamic dielectric permittivity {gy—&’(®) }/Ag (with gg=¢’(0) and Ae=
dielectric intensity), and between the normalized loss modulus G”(®)/Gy and the normalized

dielectric loss £”(m)/Ag, all being measured as functions of the angular frequency o, as:'***74°
G'(0)/Gn = {gp — €'(®)}/Ae (5a)
G"(w)/Gy = &"(w)/As (5b)

In Figure 3, these relationships are examined for the viscoelastic and dielectric data of linear P1 308k
(M =308 X 10*)* and six-arm star PI (59k)¢ (M = 59 X 10%),* both having narrow molecular
weight distribution (MWD), M,/M,, < 1.1. For simplicity, such narrow MWD samples are
hereafter referred to as monodisperse samples.

As noted in Figure 3, the monodisperse linear and star PI samples do not obey Eq. 5; the
dielectric relaxation (red symbols) is significantly narrower and slower than the viscoelastic
relaxation (blue symbols). Consequently, the entanglement represented as the tube is not fixed in
space, and the CR/DTD mechanism explained for Figure 2 plays an essential role in the slow
dynamics of those samples. This experimental finding serves as a starting point for a further test of
the dynamics of the entangled linear and star polymers. (It should be added that the fixed
entanglement environment, wherein Eq. 5 is valid, is realized for dilute probes in high-M matrices,
as shown later in Figure 23.)

C. EXPERIMENTAL OBSERVATION OF CONSTRAINT RELEASE RELAXATION

1. Overview. — The constraint release (CR) relaxation can be most clearly observed for
dilute high-M probe chains entangled only with much shorter matrix chains. As an example,
Figure 4 shows G’ and G” data (symbols) of blends of linear dilute PI 626k probe (M, = 626
X 10% volume fraction v, = 0.005) in entangling linear PI matrices with various molecular
weights M, as indicated.** For comparison, the imaginary part of the complex viscosity, 1" =
G’'/m, with ® being the angular frequency, is also shown (top panel). The time—temperature
superposition excellently worked for those data** (and for all other data presented in this
review). For the blends, the indices “1” and “2” are hereafter used to represent the short and
long chain components, respectively.

As noted in Figure 4, the data of the blends (symbols) with such small v, are almost
indistinguishable from the matrix data (dashed curves) at high o where the matrix has not relaxed.
In contrast, at low ® where the matrix has fully relaxed, the relaxation of the dilute PI 626k probe is
clearly observed, in particular for G’ and 1" being much more sensitive to weak but slow relaxation
compared to G”. (Thus, G’ clearly exhibits a double-step decrease at high and low », and n” shows
two peaks at those ®.) We also note that the mode distribution of the probe relaxation is insensitive
to M, of the matrix given that M, is much smaller than M, of the probe. In this extreme situation, the
probe relaxation is activated by the motion of much shorter matrix chains, namely, pure CR
relaxation of the probe is detected experimentally. The corresponding CR behavior of dilute probes
has been observed also for the dielectric relaxation of PI probes**>* and for the viscoelastic
relaxation*>™® and diffusion**° of polystyrene (PS) probes. Viscoelastic data of binary blends
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FIG. 3. — Normalized viscoelastic and dielectric data of monodisperse linear PI 308k (top panel) and six-arm star PI (59K)s
(bottom panel) at 40 °C. The parameters used in normalization are gy=2.41, Ae=0.10, and Gx=0.48 MPa. Data are taken
from Watanabe et al.**** with permission.

have been reported extensively also for the other polymer species, for example, polybutadiene
(PB).! However, to the best of our knowledge, no systematic data are available for long and dilute
PB probes entangled only with much shorter matrix PB chains (i.e., for the dilute PB probes in the
CR regime).

For v, (=1 —v;) < 1, the behavior of the matrix chains in the blend is negligibly affected by the
dilute probe, as noted in Figure 4. Then, the matrix contribution to the complex modulus G, * (®) of
the blend is safely evaluated as v1G; ,, * (®), with G ,, * () being the complex modulus data of
pure matrix. Correspondingly, the complex modulus of the dilute probe in the blend is obtained
from the Gy, * () and G ;,, * (0) data ag>HA4-46.51

Gz,b*(())) = Gb*(())) — U]Gl"m*((ﬂ) (6)

Figure 5 compares the storage modulus G, 1,'(®) thus evaluated for dilute linear PI probes** in the
CR regime (namely, for the PI probes entangled only with much shorter PI matrix chains). Also
shown for comparison is the G,;’(®) data of PS probes in the CR regime reported in the
literature.*>**° For clarity of the figure, the data are shown only for representative probes. Those PI

$S900E 981) BIA 0¢-| |-GZ0Z 1e /woo Alojoeignd-pold-swiid-yewssiem-1pd-awiid//:sdiy woil papeojumoc]



DIELECTRIC AND VISCOELASTIC DATA OF TYPE-A POLYMERS 29

log (n"/ Pas)

log (G'/ Pa)

log (G"/ Pa)

log (wa, / s7)

FIG. 4. — Linear viscoelastic data of PI 626k/PI blends at 40 °C (symbols). The volume fraction of the dilute high-M probe
(P1626k) is v, =0.005 in all blends. Dashed curves indicate the data of pure matrix PI. Data are taken from Sawada et al. ¥
with permission.

and PS probes have various M, and v,, and their G,},’'(w) data were obtained at different
temperatures (40 and 167 °C for the PI and PS probes, respectively). Thus, in the comparison in
Figure 5, the G, ;,'(®) data are normalized by the Rouse factor, { M,/pv,RT} with p, R, and T being
the mass density of the blend, gas constant, and absolute temperature, respectively, and plotted
against the reduced frequency co(rfb. Here, (‘c[zclb is the second-moment average viscoelastic
relaxation time of the probe evaluated from the G, ;' (®) and G, ;" () data ag 46
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FIG. 5. — Storage modulus G,,;, of dilute linear probe entangled only with much shorter linear matrix chains. The G,,;, data
for PLand PS probes (at 40 and 167 °C, rech]:ctive]y) are normalized by the Rouse factor { M,/pv,RT} and plotted against the
)

reduced frequency, m(‘cfb . Data are taken from Watanabe et al.**~*® with permission.

Gop()

0Gy (o) 00

= {/Ow th,b(t)dt}/{Am G;b(t)dt} (7)

<r[2Gg> is identical to a ratio of weighed integrals of the relaxation modulus G, ,(¢) of the probe1 (as
shown in the second line of Eq. 7). Note that the subtraction in Eq. 6 is just a minor correction for the
G}’ (o) data of the blend at low ® examined in Figure 5 (because Gy,'(®) > G 1, (®) at those ®; see
middle panel of Figure 4) and that the normalized modulus { M,/pv,RT} G, 1,'(®) and the relaxation
time (r[zct]) were experimentally confirmed to be independent of v, (see, for example, Watanabe et
al.®® and its Supporting Information, Sawada et al.** and Watanabe and Kotaka*): namely, the
probe was confirmed to be dilute and entangled only with the matrix chains.

In Figure 5, the G, /() data of various PI and PS probes having M, >> M, collapse onto a
master curve, indicating that these chemically different probes exhibit universal CR relaxation
mode distribution; see also figure 12 of Watanabe et al.?® and figure 4 of Sawada et al.**
Furthermore, at low o, those data are well described by the CR-Rouse model** shown with the solid
black curve (Fourier transformation of G¢gr(#f) given below),

RT 2 2t
for linear probe: Gcgr(t) = pl;{ E exp| — % with N, = M, /M. (8)
2 — T
p=1 CR

Here, 't[CG]l is the longest viscoelastic CR relaxation time, and the second-moment average relaxation

time (used in the horizontal axis for the black curve in Figure 5) is given by <T[cG}b =(n*/15 )tg inthe
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FIG. 6. — Storage modulus G,,},’ of dilute star PI probe entangled only with shorter star PI matrix chains. The G»,,,’ data of
the probe at 40 °C are normalized by the Rouse factor { M, »/pv2RT} and plotted against the reduced frequency, m(rﬁl)
Data are taken from Watanabe et al.* with permission.

continuous treatment' for N >> 1. (The numerical pre-factor of 7%/15 is obtained from the second
line of Eq. 7, with G, ,(¢) therein being replaced by G¢gr(#) given by Eq. 8.)

The universality of the mode distribution seen in Figure 5 vanishes when M, and M, are not
sufficiently separated and the CR mechanism does not dominate the probe relaxation; see figure 3 of
Sawada et al.,** figure 4 of Qiao et al.,”" and figure S5 in Supporting Information of Matsumiya et
al.>” Thus, this universality is an important criterion for judging if the probe relaxation is dominated
by the CR mechanism.

This criterion can be cast as a critical value of the Struglinski-Graessley parameter SG =
MzMg /M f This SG is defined as a ratio of the reptation time of the probe, Trep > M%/Me, to the
Rouse-type CR relaxation time of the probe, Tcr 2 X Trep 1 (Mo/M)* MfM% /M. g, and numerical
pre-factors in T » and Tcg » are omitted in SG. (The matrix reptation time T,ep, ; involved in Tcg 2
differs from the actual relaxation time of the matrix, as discussed later in relation to Figures 9 and
10.) The universal mode distribution (namely, the CR dominance in the probe relaxation) is
experimentally found only in ranges of SG > 0.2 and SG > 0.5 for PI** and PS"***® probes,
respectively. The critical SG value for the CR dominance is smaller for PI than for PS, suggesting
that the CR effect on the relaxation emerges more prominently for PI than for PS when CR is
competing with other relaxation mechanisms such as reptation. This difference between PI and PS
is further discussed later for Figures 9, 11, and 12.

The CR relaxation has been observed also for dilute star PI probes entangled with much shorter
matrix star PI chains.® Figure 6 shows data of the normalized storage modulus of those star probes,
{M 1 2/pU2RT} Gy /(@) with M, » being the arm molecular weight of the probe, plotted against
the reduce frequency co(t[z?b. The black solid curve indicates the reduced storage modulus obtained
from the CR-Rouse relaxation modulus of tethered chains,
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: ; probe matrix
lme?r PS/linear PS PS 2810k PS 39k
. 53 | 167°C PS 2810k PS 72k
e PS 1190k PS 39k

PS 1190k PS 72k
PS 427k PS 3%
PS 315k  PS 3%

24 25 26 27 28

3 2
log M; M,
1 y

; . probe matrix
linear PI/linear PI Pl626k  PI 14k
@ |40°C PI 626k  PI 18k
= PI626k  PI21k
— PI 626k  PI 34k
53 1+ PI 626k  PI43k
s PI329k  PI 14k
55 PI329k  PI 18k
S 27 PI329k PI21k
PI308k PI21k
, , . PI248k  PI 14k
-3 PI248k  PI 18k
2223 24 25 26 proggk  PI2lk

log M’ M’ PI 179k  PI 14k
1 2

FIG. 7. — Second-moment average viscoelastic CR relaxation time of dilute linear PS and PI probes in much shorter linear
PS and PI matrices at 167 and 40 °C, respectively. The plots shown with the same color indicate the relaxation time data
obtained for a given probe in different matrices (the matrices are mostly common for different probes), as shown in the
legend. Those data are double-logarithmically plotted against M: |3M§ . Data are taken from Watanabe et al.>***~¢ with

permission.
Nann.Z 2
VL RT 2p — 1)t
for star probe: Ger(f) = 542 E exp —% with Nymo> = Myma/Me — (9)
arm,2 _ T
p=1 CR

(The average relaxation time associated with Eq. 9 is given by <‘L‘CR> (m o 12)r for Narma > 1,
where the pre-factor of © 2/12 is obtained from the second line of Eq. 7 with G,, b(t) therein being
replaced by Gcg(t) given by Eq. 9.) The reduced modulus data of the star probes exhibit almost
universal dependence on co(r[2 g) atlow o <2/ <r2 g) irrespective of My and My oy, Of the matrix
and probe arms, and are close to the CR—Rouse modulus, although deviation from this universal
dependence is noted at high o because of fast relaxation of the probe attributable to shallow CLF.*®
It needs to be added that the deviation from the universal u)('r[zcb dependence is not clearly observed
for the linear probes (cf. Figure 5), because those linear probés have much higher M, compared to
the star probe arms tested in Figure 6, and thus the non-universality due to CLF is not clearly
resolved at the frequencies examined in Figure 5.

2. Data of CR Relaxation Time. — For the dilute probes exhibiting the universal behavior of
G, ' (@) atlow o (cf. Figures 5 and 6), the <r[2 ,1} data can be used as the second-moment average
viscoelastic CR relaxation time (1[2(%19 The <t[2 (]jR> data available in the literature are
summarized in Figure 7 for various linear probes in various linear matrices****~*® and in Figure
8 for two star PI probes in various star PI matrices.*® The plots shown with the same color
indicate the (T[ZGéR> data obtained for a given probe in different matrices (and the matrices are
mostly common for different probes), as shown in the legend. Those <r[2 éR> data, cast in
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s robe matrix
~ star PI/star PI PLI) (80K), PL(9.5k),
— > o p40°C PI (80k), PI (16k),
SR PI (80k), PI (24k),
L PI (80k), PI (31k),
o 37 PI (80k), PI (41Kk),
9 E PI (59k), PI (9.5k),
= a4t PI (59k), PI (16k),
o PI (59k), PI (24k),
o S PI (59k), PI (31k),

FIG. 8. — Second-moment average viscoelastic CR relaxation time of dilute star PI probes in shorter star PI matrices at 40

°C. The relaxation time data normalized by the CR-Rouse factor for the probe star arm relaxation time Ndj] 5, With Nypm »

being the number of entanglements per probe arm, are semi-logarithmically plotted against the number of entanglements per
matrix star arm, N, ;. The plots shown with the same color indicate the relaxation time data obtained for a given probe in
different matrices (the matrices are mostly common for the two probes), as shown in the legend. Data are taken from
Watanabe et al.*® with permission.

empirical equations shown later, allow us to estimate the CR relaxation time of monodisperse
linear and star chains in bulk, thereby offering an experimental basis for discussion of the CR
contribution to the relaxation of those chains.

In Figure 7, the <’t[2 éR> data of various linear probes in various linear matrices collapse on a
universal line when plotted double-logarithmically against M,>M,?, as noted in the top and bottom
panels for PS and PI, respectively. The proportionality to M% isin accord with the Rouse-like feature
of the actual CR process observed for the PI and PS probes (cf. Figure 5). Similarly, for two star PI
probes in various star PI matrices, the normalized Nan%] 2(1[2 éR> data with Nanfl , being the CR—
Rouse factor for the probe arm relaxation time collapse on a line when plotted semi-logarithmically
against Ny, 1, where Ny, | and N, » indicate the entanglement number per arm of the probe and
matrix star chains, respectively: Ny j=Mm /M with M,=5.0X 103 for PL. (The normalization by
the CR—Rouse factor was necessary for collapse of the plots for the two star probes.) These results
can be cast in the following empirical equations (shown in Figures 7 and 8 with black lines):

for the linear PS probe in linear PS melt at 167 °C*®

)
(Ger) = 15 er = 20X 10 MM (in s) (10)
for the linear PI probe in linear PI melt at 40 °C*>!
2
() = = T = 10X 107M3M2(in s) (11)

for the star PI probe in star PI melt at 40 °C*°
2
19y =29 — 4.0%x 107N Lexp{0.71N,, , \ (in s 12
2,CR 12 2,CR arm,2

These empirical equations are used in a test of the CR contribution to the terminal relaxation in
monodisperse bulk shown below and in an analysis of the DTD process explained later. (The
<r[2 éR> data of linear probes are well described by those equations, but an equally good description
is given by an empirical equation with slightly weaker M, dependence.** Nevertheless, the results
of the test and analysis hardly changed even if the latter equation was used. Thus, for definiteness,
we adopt Eqs. 10—12 as the empirical equations that serve as the basis of our test/analysis.)
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3
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OF 40°C
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= 167°C
—8
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o
%D star PI
— 40°C
O 1 1 1
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logN, log 2N,

FIG. 9. — Ratio of the second-moment average viscoelastic CR relaxation time (T, En]CR) to the measured second-moment

average relaxation time (r,[n ]) obtained for monodisperse linear PS and PI and monodisperse star PI melts at temperatures as

indicated. (t ‘[“]CR> was evaluated from the empirical equations (Eqs. 10—12) for the CR time data of dilute probes in much

shorter matrices. The (‘cf ]CR> / <‘E[G]> ratio for monodisperse linear chains is plotted against the number N of entanglements per

chain, and the ratio for monodisperse star chains is plotted against the number 2N,,,, of entanglements per the longest span
(two arms) of the star chain. Data are taken from Watanabe et a] 2343644465152 iy permission.

Setting M1 =M,=Min Egs. 10 and 11, we can experimentally evaluate the average viscoelastic
CR relaxation time <'rn? ]CR> of monodisperse linear PS and PI samples of the molecular weights M.
Similarly, from Eq. 12 with Nym.1 = Nam2 = Narm, We obtain <Tf ]CR> of monodisperse star PI
samples. For those PS and PI samples, the second-moment average relaxation time (terminal
relaxation time) <r£n]> has been obtained as a product of the zero-shear viscosity and recoverable
compliance, and thus the (t LCI; ]CR> /{t ¢ ]> ratio can be evaluated in a purely empirical way. Figure 9
compares this ratio for the linear PS and PI as well as for the star PI. The segmental friction involved
in <‘t£g ]CR> and (r“} is canceled in the ratio, so that the comparison in Figure 9 allows us to
unequivocally examine differences of the CR contribution to the terminal relaxation of respective
polymers.

Comparing the monodisperse linear and star PI having the same entanglement number per
chain span, in other words having N=2N,,,,, (blue and green symbols in Figure 9), we note that the
<r£§ ]CR> / (rln ]> ratio is considerably smaller and thus the CR contribution to the terminal relaxation
is significantly lar er for the star PI. This fact is also deduced in our later analysis of the DTD
process. (The < Toy CR) / <’Em]> ratio smaller for the star chain is also expected from the tube model
assuming the full dilation of the tube for both linear and star chains, but this model itself fails for the
monodisperse star chain, as shown later in that analysis.)

We also note that the (t I[H]CR> / (rg ]> ratio is considerably smaller and the CR contribution is
considerably larger for linear PI than for linear PS having the same entanglement number N; cf. blue
and red symbols. In our ordinary understanding, the terminal viscoelastic relaxation of entangled
monodisperse linear polymers is uniquely determined by the plateau modulus GN] and the terminal
relaxation time (T < ). However, the considerable difference of the ( m CR ratio noted for
linear P and PS (Figure 9) suggests that this understanding needs to be reﬁned for the CR relaxation
of those polymers. This difference is further tested below in relation to the M, dependence of the CR
time of probes in blends. Readers who like to skip this test can directly proceed to the “D
Experimental Test of Dynamic Tube Dilation Mechanism™ section where the DTD mechanism is
examined experimentally.

3. Factors Determining CR Relaxation Time. — In the simplest molecular view, the
viscoelastic CR relaxation time of a dilute probe, <r[f(]:k>, is expected to be proportional to the
terminal relaxation time of the pure matrix, <t17m>. However, this is not the case in experiments. For
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FI1G. 10. — Comparison of G" and " (‘C[IGI]HY ! data of PI 626k/PI blends at 40 °C. The dilute PI 626k probe therein exhibits
1.4 with permission.

the CR relaxation. Data are taken from Sawada et al.
the star PI matrices examined in Figure 6 (M, 1 =9.5k—41Kk), the relaxation time is well described
by an empirical equation, (r[l ,L) 2.3X10™ 5N2 1exp{ 0.75Nam 1} (ins) at40 °C, with Ny, 1 being
the entan lement number per matrix star arm. ki This Nam,1 dependence of (rg []n> is stronger than
that of <‘E2 CR) (Eq. 12). Similarly, <’E[1 1i1> of the linear PS and PI matrices is proportional to M35, and
this M, dependence is stronger than that of (t[z éR> (cf. Egs. 10 and 11). These differences between
<T[ZGéR> and (T, 1G] ) are 1mp011ant in our discussion of the CR mechanism and are further examined
below for the raw G’ and 1" data in order to avoid any small uncertainty in the subtraction and zero-
o extrapolation made for ('t[zGt]) in Egs. 6 and 7.

For the PI/PI blends that contain the same, dilute PI 626k probe (exhibiting the CR relaxation)
but different linear PI matrices, Figure 10 plots the G" and <T[1G1i1> data** against the reduced
angular frequency (D(r%ﬂ) with the matrix relaxation time (7, 6] ) being evaluated as the product of
the zero-shear viscosity and recoverable compliance of the matrix. (The 1" data are normalized by
the matrix relaxation time <T1 m) ) The dashed curves show the data of the matrices plotted in the
same format.

At high ® where the matrix (occupying 99.5% of the blends) dominantly contributes to the
blend relaxation, the data of the three blends (symbols) and the three matrices (dashed curves) agree
with each other when plotted against w(rlcfm), as clearly noted in Figure 10. This agreement is
consistent with our understanding that the terminal viscoelastic relaxation of monodisperse linear
polymer is determined by Gy (common for the three matrices) and (1:[1 Ii1> for the blends and
matrices, the difference of N| has been compensated by plotting the data against 0)<T[1 rL) (~mN; 33,
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which results in the agreement of the high-® data. In contrast, no agreement is noted for the low-®
data of the blends detecting the CR relaxation of the dilute PI 626k probe. Specifically, in the
reduced frequency scale of co(t[lGI]n> the probe relaxatron is systematically accelerated with
increasing M, as clearlg noted for both G" and 1" (1} 6] ) data. This result indicates, without any
further analysis, that (rz CR} of the probe is more weakly dependent on M, compared to <T[1G111> of the
matrix. The factor of M; 3 appearing in Egs. 10 and 11 gives just a quantitative description of this
experimental fact.

This M; dependence of <‘t[2 (]:R> could be due to multiplicity of chains sustaining one
entanglement (argued by Klein®*) combined with the CLF contribution to the CR process,' oravery
broad crossover in the local CR relaxation on an increase of M, (>M,) as argued by Read and
coworkers™* (although the corresponding crossover of i (6] ~) has not been experimentally resolved
for monodisperse matrices). The molecular origin(s) of the M3 dependence of (1[2 éR) deserves
further studies.

In relation to the above test of the M, dependence of (r[z éR> it is also informative to examine
the difference of <'c[2 éR> for chemically different PS and PI probes by focusing on the raw G" and n”
data so as to again avoid any small uncertainty in the subtraction and zero-® extrapolatron (Egs. 6
and 7). For this purpose, Figure 11 shows the normalized G'/Gy and 1" Gy (r[l ‘L) data for P and
PS blends***® that contain dilute probes in linear matrices of very similar entanglement numbers,

=6.9 and 6.8 for PS 124k and PI 34k in the top panel and Ny =4.0 and 4.2 for PS 72k and P121k in
the bottom panel: the normalization by Gy is necessary for direct comparison of the data of
chemically different blends. For PS and PI at 167 and 40 °C, respectively, Gy/MPa=0.21 and 0.48
and M.=18 X 10* and 5.0 X 103, the latter being used for evaluation of N;.

At high ® where the matrix chains dominantly contribute to the relaxation, the data of the
blends (symbols) and matrices (dashed curve) collapse on a universal curve when plotted against
the reduced frequency m(rﬂl) as noted in Figure 11. This collapse is again in harmony with our
understanding that the terminal viscoelastic relaxation of monodisperse linear polymers (matrix in
this case) is determined by G and (‘tg ]L> However, at low o where the CR relaxation of the dilute
probe dominates the blend relaxation, the PS and PI blends exhibit a clear difference in their data.

In Figure 11, the differences in the volume fraction v, and the entanglement number N, of the
probes, v, = 0.01 and N, = 156 for PS 2.8M and v, = 0.005 and N, = 125 for PI 626k, partly
contribute to the difference of the low-w CR relaxation of these probes. However this dlfference
due to the differences in N, and v, can be removed when the G’ and 1" {(r1 m>N2} data are
normalized by the Rouse factor for the probe modulus, Fg = {M,/pv,RT}, and plotted against a
reduced frequency o( r[IGr]n>N§ where N3 is the Rouse factor for the CR time of the probe. However,
the difference of the low-o CR relaxation of the PI and PS probes clearly remains even after this
normalization, as shown in Frgure 12. This remaining difference does not vanish even if the
normalized FrG’ and Frn ”{( T m)Nz} ! data are plotted against another type of reduced
frequency, ® N°‘N2 with oo=3 or 3.5 (because the PS and PI matrices have almost identical N,).

The difference between the PS and PI probes seen in Figure 12 clearly indicates that these
probes have different CR relaxation times (r[zGéR> even when N; and N, are common for them. In
other words, (rgGéR> is not uniquely determined by N, and the matrix relaxation time <‘E[1 I]n> but is
affected by an extra factor that changes with the chemical structure of the chain. This extra factor,
not clearly recognized for monodisperse polymers, may correspond to the number z of local
constraints per entanglement considered in the CR-Rouse model of Graessley:** z reflects the
number of matrix chains forming an entanglement for the probe chain. If the entanglement is
exclusively due to the binary (pair-wise) constraint between the chains irrespective of their
chemical structure, the above difference between the PS and PI probes may not be straightforwardly
deduced within the CR-Rouse model. A correlation between the extra factor and the chemical
structure of the chain is closely related to the nature of entanglement (binary or multiple-chain
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y~! data of PI 626k/PI and PS 2.8M/PS blends (at 40 and 167 °C,

respectively) against the reduced frequency m(rﬂ]) The dilute PI 626k and PS 2.8M linear probes (v, =0.005 and 0.01) exhibit

CR relaxation. Black curves for G'/Gy indicate a sum of G'5 cr/Gy for the CR—Rouse relaxation of the probe (with G’, cg being

given as Fourier transformation of Eq. 8) and the terminal tail of the v;G’; ,,/Gy data of the matrix. The corresponding sum for
n"Gy' <‘E[G] )71 is also shown with the black curves. Data are taken from Watanabe et al.***® with permission.
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FIG. 12.— Plots of normalized Fr G’ and Frn"{ (x\”, )N3} ™" data of P1626k/P and PS 2.8M/PS blends examined in Figure

11 against a reduced frequency m(r[l(‘;m)N; Black curves are the same as those in Figure 11. Data are taken from Watanabe et
al.***¢ with permission.

constraint) and is further discussed later in the “F. Comments on Recent Theoretical Model/
Analysis” section in relation to the tube dilation exponent.

Here, it should be emphasized that the extra factor discussed above is absorbed in the numerical
front factors in Eqs. 10 and 11, and thus the CR behavior of chemically different PS and PI probes is
still described commonly by the CR—Rouse model (with its r[CGl% being specified by Eqs. 10 and 11).
In fact, the CR relaxation of the PS 2.8 M and P1 626k probes examined in Figures 11 and 12 exhibits
the same, Rouse-type mode distribution, as noted from the agreement of the data and black solid
curves, where the curves for G’ represent a sum of G’ of the probe (obtained from Gcg(f) shown in
Eq. 8) and the terminal tail of the v,G; ,," data (x ®%) of the matrix, and the curves for 1”, the
corresponding sum reduced by . Note that the difference between the PS 2.8M and PI 626k probes
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N@'(t) entanglement segments

FIG. 13. — Schematic illustration of a dilated tube and a linear chain trapped in it.

in Figures 11 and 12 vanishes when their G, ;,’ data are normalized by the Rouse factor and plotted
against the frequency normalized by their CR time data <r[26g> see collapse of the plots for those
probes around the Rouse—CR curve in Figure 5 (the filled gray square and circle for the PS 2.8M
probe in PS 72k and PS 124k matrices, and the unfilled red square and circle for the PI 626k probe in
PI 21k and PI 34k matrices). This collapse again indicates the validity of the CR—Rouse model.
Thus, in the following sections, we use this model to examine some details of the dynamic tube
dilation (DTD) mechanism.

D. EXPERIMENTAL TEST OF DYNAMIC TUBE DILATION MECHANISM

The CR—Rouse process has been experimentally confirmed for dilute probes entangled with
much shorter matrix chains (cf. Figures 4-6). Thus, the relaxation mechanisms assumed in the fixed
entanglement environment, the reptation and arm retraction mechanisms for the linear and star
chains (Figure 2), should be modified by the CR mechanism in actual entangled systems. This
modification can be made in the time evolution equation of the spatial position of the entanglement
segment (subchain explained for Figure 1), as done in the Graham-Likhtman—McLeish—Milner
model®® (for non-linear rheology), for example. However, a combination of the dielectric and
viscoelastic data of type-A polymer, PI, enables us to make this modification in a simple and
experimental way. This section focuses on this modification. The results presented below are
believed to be general and applicable to PS and other amorphous polymers having no type-A
dipoles.

As astarting point of the modification, we consider accumulation of the local CR processes that
allows successive entanglement segments, say B(7) segments, to be mutually equilibrated through
exchange of their positions, thereby behaving as a dilated segment as a whole. This dilated segment
serves as a stress-sustaining unit in the time scale of the mutual equilibration. In the tube model, this
mutual equilibration is described as the dynamic tube dilation (DTD) illustrated in Figure 2, and the
diameter a’(¢) of the dilated tube is related to f(¢) and the entanglement length a as

a'(t) = {B(6)}a (13)

In a short time scale of intrinsic Rouse relaxation within the entanglement segment, B(f)=1 and a’(¢)
=a. In a longer time scale, a’(¢) and B(¢) increase with 7 in a manner explained later.

In a given time scale, a chain is equilibrated only up to the length scale of a’(¢) and thus
topologically constrained in the dilated tube having the diameter a’(z). In that time scale, the chain is
allowed to move only in this dilated tube. Namely, the reptation and arm retraction mechanisms for
the linear and star chains still work, but these mechanisms need to be redefined with respect to the
dilated tube. Figure 13 illustrates this situation for a linear chain. At a time ¢, portions of the linear
chain near its ends have random orientation to lose its memory of the initial orientation. The
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remaining portion, having a fraction ¢’(¢), is trapped in the dilated tube and preserves its initial
orientation (at time 0) defined for every () entanglement segments, thereby contributing to the
stress. The situation is the same also for a star chain. Thus, for both linear and star chains, the
normalized viscoelastic relaxation function is expressed in terms of B(¢) and the survival fraction of
the dilated tube, @’(7), ag2+35:36.43.51

w(t) = @'(¢t)/B(¢) (for both linear and star chains) (14)

Equation 14 is equivalent to Eq. 4 in the fixed tube model, except that the dilated segments serve as
the stress-sustaining unit and thus the modulus in Eq. 14 exhibits an extra decay by the factor of 1/
B(@).

The normalized dielectric relaxation function @() also can be expressed in terms of B(f) and
¢’ (#) with the aid of Figure 13. The dielectric memory of the linear chain is preserved only in the
inner portion of the chain shown therein, so that Eq. 3 gives an expression of @(¢) in terms of the end-
to-end vector Ry, of that portion, ®(r) = (R;,(7) - Rin(0)>eq/Na2. R,,(?) at time ¢ is close but not
identical to R;,(0) at time 0 because of the displacement of the inner portion within the edges of the
surviving part of the dilated tube; see purple arrows in Figure 13. Because R;,(#)=R;,(0)+D; +D»,
with D; and D, being the displacement vectors in those edges, we find ®(r) = { <Rin(0)2)eq +{(D;+
D,) - Rin(0))eq) INa*=(N¢'(t)a* + (D, +D,) - Rin(0))eq }/Na?. (Note that the surviving part of the
dilated tube constrains N@’'(f) entanglement segments, and thus (Rin(0)2>eq =N (p’(t)az.)
Furthermore, considering the Gaussian conformation of the inner portion at equilibrium (where
Eq. 3 is defined), we find a relationship 2((D; + D5) - Riy(0))eq + <D%> + (D%) =0, where a
relationship valid for the CR-Rouse process,”® [(D?) + (D3)| > 2|(D, - D, )| at¢ < T[CGIL has been
used. From this relationship and a simple estimate®* <D2> ={ad'(t)—a }2/4, the above expression of
®(¢) is finally rewritten as

1 2
(1) =9'(t) — N {{B(l)}l/z—l} (for monodisperse linear chain)**~ (15)

From a similar analysis, we find an expression of ®(¢) of the star chain,

1
8Nam

2
@(1) = ¢'(t) [{B(t)}l/z—l} (for monodisperse star chain)®*~ (16)
The second terms of Egs. 15 and 16 are a correction due to the displacement in the edges of the
surviving part of the dilated tube, but this correction is minor unless the tube is largely dilated to
have a'(f) =~ (R?) ;42. Thus, ®(7) is close to @’ (¢) for both linear and star chains, which is similar to the
situation in the absence of CR/DTD; cf. Eq. 4. (For monodisperse linear and star PI, respectively,
®(f) and ¢'(r) are directly compared in figure S2 of Supporting Information of Matsumiya et al.>’
and in figure 9 of Watanabe et al.36). Consequently, the relationship between @(¢) and ¢’(¢) is rather
insensitive to the CR and DTD mechanisms. This feature of the dielectric ®(f) makes a sharp
contrast to the CR/DTD-sensitivity of the viscoelastic () noted from the factor B(¢) in Eq. 14.

This difference between ®(¢) and p(¢) is very useful for an experimental test of the DTD
mechanism. Specifically, we can evaluate the survival fraction @’(z) of the dilated tube from the
dielectric @(r) data (cf. Eqgs. 15 and 16) given that the number of equilibrated entanglement
segments P(7) is known. Using these ¢'(¢) and B(¢) in Eq. 14, we can calculate the viscoelastic j1(7)
expected for the DTD process. Comparison of this calculation with the 11(#) data allows us to test
whether the molecular picture of DTD can consistently describe the ®(f) and p(¢) data. This
experimental test of the DTD mechanism just focuses on the consistency between ®(¢) and 11(7) so
that it is free from delicate assumptions in detailed model calculation of the # dependence of O(#) and
L(®). The results of the test are summarized below.
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FIG. 14. — G’ data of P1308k/PI 21k blends normalized by a factor of v, " with d=1.3 (top panel) and d=1.0 (bottom
panel). The normalized data are plotted against the normalized frequency, oa(‘r[fg ). Data are taken from Watanabe et al.** with
permission.

1. Test of Molecular Picture of Full-DTD. — Several molecular models**-*"~>° assume that the
relaxed portion of the chain behaves as a solvent not contributing to the entanglement, and thus the
tube diameter in amelt is fully dilated to the diameter in a solution having a polymer volume fraction
v=@'(¢). With this full-DTD assumption, the number of equilibrated entanglement segments, B(z),
is related to @'(f) as>*333443

Be o) = {9’ (1)} with d = 1.3 for PI (17)

Equation 17 is equivalent to the scaling of the plateau modulus of the solution, Gy soin =
GN,bulkUIH-

The value of the dilation exponent d is a subject of recent theoretical analyses (that preferd
=1 at short7), as explained later in detail. However, in our experimental test of the molecular picture
of full-DTD, d is to be determined directly from the modulus data of blends containing the long
chains that are entangled among themselves and with much shorter chains. The G’ data of PI 308k/
PI 21k blends®* with v, > 0.1 serve this purpose; the long chains therein (PI 308k) are entangled
among themselves as well as with the short chains (P 21k). In Figure 14, the G’ data of those blends
are normalized by a factor of v, %) withd=1.3 (top panel) and d=1.0 (bottom panel) and plotted
against the normalized frequency co(r[ft]). Here, <‘L'[2Gt],> is the second-moment average viscoelastic

60,61
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monodisperse linear PI, 40°C
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FIG. 15. — Comparison of normalized relaxation modulus p(7) of monodisperse linear PI (circles) with dielectrically

evaluated full-DTD modulus p.prp(f) (curves). For monodisperse linear PL, 11 prp(f) agrees with the partial-DTD modulus
Wp-prp(8). G*(0) data of linear PI reported in Watanabe et al.>*37 were converted into ().

relaxation time of the long chain in the blend evaluated by Eqs. 6 and 7, except that G ,, * (®) in Eq.
6isreplaced by G, ,,, * (A®) where the factor A represents minor retardation of the matrix relaxation
due to the entanglement with the concentrated long chains.*® (This entanglement suppresses CR for
the short matrix chains in the blends to retard their relaxation compared to that in the pure matrix.)

Ford=1.3,the v, S+ G data of the PI 308k/PI 21k blends are well superposed on the G’ data
of bulk PI 308k (black circles) in the terminal relaxation regime at w(r[z g> < 2, as noted in the top
panel of Figure 14. In contrast, the bottom panel shows that d = 1.0 gives much poorer
superposition, as most clearly noted from comparison of the insets in the top and bottom panels. The
corres[k)onding difference, good and poor superposition for d = 1.3 and 1.0, is noted also for the

G’ data of the blends as well as for the v, > ) G data of PI 308k solutions in an oligomeric
butadlene. * Thus, our experimental test of the full-DTD picture adopts d= 1.3, as already shown in
Eq. 17.

Substituting Eq. 17 into Egs. 15 and 16, we can use the dielectric ®(7) data of monodisperse
linear and star PI to evaluate their ¢’ () for the case of full-DTD. The viscoelastic relaxation function
obtained from this ¢’(7), pepro()=1{ @' ()} ™ with d=1.3 (cf. Eqs. 14 and 17), is shown in Figures
15 and 16 with green curves for comparison with the 11(r) data of monodisperse linear***’ and star
PL>! respectively. (For this comparison, the G*(w) data of linear PI reported in Watanabe et al.***’
were converted into u(7).)

monodisperse 6-arm star PI, 40°C

log (ta;' /s)

FIG. 16. — Comparison of normalized relaxation modulus p(#) of monodisperse six-arm star PI (circles) with dielectrically
evaluated full-DTD modulus p.prp(#) and partial-DTD modulus p, prp(f) (green and red curves). Data are taken from Qiao
et al.>' with permission.
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FIG. 17. — Comparison of normalized relaxation modulus p(7) of PI 308k/PI 21k blends (circles) with dielectrically
evaluated full-DTD modulus p¢.prp(#) and partial-DTD modulus p, prp(?) (green and red curves). Data for v, =0.1-0.5 are
taken from Watanabe et al.**>* with permission, and the data for v, = 1.0 from Figure 15.

For the PI 308k/PI 21k blends examined in Figure 14, we first need to decompose the ®(r) data
of the blend as a whole into contributions ®(¢) and ®,(¢) of the short and long linear chains
(components 1 and 2):34 O(t)=(1—0)D(t) +vV,D,(¢). The mode distribution of @, (¢) was found to
agree well with that of the short chain in monodisperse bulk,”* which enabled easy decomposition.
Then, from those ®(1), ¢, (¢) of the component j was evaluated through a relationship analogous to
Eq. 15 combined with Eq. 17, ®,(t) = ¢;'(t) — (1/4N)[{ ¢’ (?) V2 1% with j=1,2 and o'H=>1-
V), () + Uz(pz’(t).3 * (This relationship considers the dilated tube diameter to be common for the
long and short chains, as noted for the factor in the second term, {¢'(¢) }_d/ 2= asprp’ (H)/a for full-
DTD.) The corresponding viscoelastic relaxation function, pyprp(f) = {@'(#)} " with d=1.3, is
compared with the u(7) data in Figures 17.%*

For the monodisperse linear PI chains (Figure 15), peptp(f) (green curves) is in good
agreement with the [1(7) data (circles) in the entire range of ¢. Thus, the full-DTD assumption is valid
for consistently describing the @(f) and () data of those chains. This validity has been confirmed
also for G’(®) and G” () data in the frequency domain (see figure S1 in Supporting Information of
Matsumiya et al.>”).

In contrast, for the monodisperse star PI (Figure 16) as well as for the blends of linear PI (Figure
17), ue.prp(f) (green curves) is considerably smaller than the [1(f) data at intermediate 7. Namely, the
molecular picture of full-DTD significantly overestimates the viscoelastic relaxation at those ¢, as
noted also in the frequency domain.***** (Similar results have been found also for a Cayley-tree type
branched PL> 6) In particular, for the blends with a small volume fraction of the long chain (v,=0.1
and 0.2), this overestimation is most significant at = 10""-10"" s where the short matrix chain
(majority in the blends) has fully relaxed but the long chain has not; see Figure 17. Nevertheless, at
either longer or shorter time scales, L. prp(f) agrees with the pu(f) data of the blends. These results
suggest the origin of the failure of the full-DTD picture, as discussed in the following section.

Here, it is informative to examine the prediction of the Milner—McLeish (MM) model®® for
entangled monodisperse star chains. The MM model is a sophisticated tube model that incorporates
the stochastic, first-passage nature of the arm retraction but still adopts the full-DTD picture. The
normalized viscoelastic and dielectric relaxation functions of this model can be summarized as>>">®

u(t) = lLtqd/OLeq{l —Lieq}dexp(—m)dz (18)
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and

00 = g /0 S 2 Jexp <_th )dz (19a)

a 1 a\ " ’
K=1-——+ 1—(— 19b
Leq SNarm (Leq> ( )

d - —(14+4d) < 2 >—(1+d/2)
2(z) =  [—— —1-= 19¢
( ) 8Narm { < Leq) Leq ( )

InEgs. 18 and 19, L.q=Nama is the equilibrium contour length of the star arm consisting of Ny,
entanglement segments, Tyv(2) is a time required for the arm retraction over a contour length z
(that includes both shallow and deep retraction, the latter being associated with an entropic
penalty), and d is the dilation exponent. Figure 18 compares the MM calculation (withd=1.3) and
the 11(¢) and @(¢) data of six-arm star PI (80k)s sample. (The data and calculation in the frequency
domain published in Watanabe et al.>® were converted into the time domain.) For an adequate
choice of the model parameters, the MM model excellently describes the [1(¢) data; see red curve
in the top panel. However, the model with the same parameters gives the dielectric ®(r)
considerably larger than the data at long ¢, as shown with the red curve in the bottom panel. An
adjustment of the parameters allows the MM model to describe the ®(¢) data (cf. green curve in the
bottom panel), but the viscoelastic () calculated with those adjusted parameters (green curve in
the top panel) is significantly smaller than the data. Namely, even the sophisticated tube model
fails to consistently describe the viscoelastic and dielectric data of star PI, given that the model
adopts the full-DTD picture. (The failure is noted also for the model calculation with d=1.) This
result for the MM model is consistent with the results of experimental test of the full-DTD picture
presented in Figure 16: the MM fitting of the ®(f) data gives p(f) being smaller than observed (cf.
green curve in top panel of Figure 18), which is similar to the experimental results seen in Figure
16.

2. Test of Molecular Picture of Partial-DTD. — The local CR process is accumulated during
the relaxation to expand a length scale of lateral displacement allowed for the entanglement
segments. DTD is the molecular picture that makes coarse-graining of this accumulation in both
length and time scales to define an effectively dilated tube in a given time scale.'*?**® Thus, the
DTD picture should be valid if the length and time scales are consistently coarse-grained. For a test
of this consistency, the number of equilibrated entanglement segments assumed in the full-DTD
picture, Brprp(®) = {@'(®) }7‘1 (Eq. 17), should be compared with the maximum number of
equilibrated segments allowed by the CR mechanism, Bcr(t) = 1/cr(?), with Jcgr(?) being a
survival function specified below.

For a monodisperse linear chain composed of N entanglement segments, cr(f) can be
expressed as*®!
for monodisperse linear chain

1 N—NcLr r[[) CR linear] NcLg FL CLF,linear]
1) =— ex -t + €X -1 20
Ver(t) N Z p TR Z p ToLr (20)

p=1 p=1

with

with
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FIG. 18. — Test of full-DTD model (Milner-McLeish model) for viscoelastic and dielectric relaxation functions, p(f) and
@(#), of monodisperse star PI (80k)s. The model parameters are common for p(f) and @(¢) (but differ for the red and green
curves). For further detail, see text. Data and calculation in the frequency domain® were converted into the time domain.

r[[) CR linear] _ 12 (%) sin 2 (%) (213)

and

[ CLE[incar] _ ;2 PT P Neig = VN 21b
r sin ( 2NCLF> sin <2NCLF , Netr = VN (21b)

Here, tcr denotes the CR time defined for the displacement of entanglement segments and is

equivalent to the known dielectric CR time for the end-to-end fluctuation, TER = ZT[gA (rg2 has been

confirmed to coincide with ZT[CGé for dilute PI probes in the CR regime>*). Equation 20 considers the
CR-Rouse process of a given chain (probe) activated by the global motion of the surrounding
chains (the first summation in Eq. 20) and by the contour length fluctuation (CLF) of the probe
(equivalent to the surrounding chains in the monodisperse system; the second summation). Ncp g is
the number of entanglement segments relaxing through CLF that occurs with a known
characteristic time Tcpp (intrinsic Rouse time of the whole chain backbone). The factor
ri[, CR linear] indicates a relaxation time ratio of p-th CR mode to the slowest CR mode, and the other
factor r,[, CLF linear] 1o ratio for p-th and slowest CLF modes. (For high-M linear PI, the CLF term in
Eq. 20 is not important at long ¢. Thus, Eq. 20 with Nc; p=0 was used in Watanabe et al.*> However,
for completeness, Eq. 20 with Nc g = VN was used in this article to evaluate \cg(r) for
monodisperse linear PI examined in Figure 15.)

For the star chain having N, entanglement segments per arm, \Jcg(?) is also given by Egs. 20
and 21, where N is replaced by N, and the relaxation time ratios, r,,, by the Rouse-type ratios for a

tethered chain,36’5 !

$S900E 981) BIA 0¢-| |-GZ0Z 1e /woo Alojoeignd-pold-swiid-yewssiem-1pd-awiid//:sdiy woil papeojumoc]



46 RUBBER CHEMISTRY AND TECHNOLOGY, Vol. 93, No. 1, pp. 22-62 (2020)

monodisperse linear PI, 40°C
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FIG. 19. — Equilibration number of entanglement segments of monodisperse linear Pl assumed in the full-DTD molecular

picture, B¢ prp(?) (blue circles). The maximum equilibration number allowed by the CR—Rouse mechanism, Bcg(#) evaluated

in this article (cf. Eqs. 20 and 21), is shown with red curves. Bprp(7) data are taken from Watanabe et al.* and Supporting
Information of Matsumiya et al.*” with permission.

2p —1
r][)CR,star] _ sinz( {2p —1}m )sin_z (#) (22a)

2{2Nym + 1} 2{2Nym + 1}

[ CLF,star] __ _:.2 {2[? — I}TE s =2 T _
r = sin <72{2NCLF n 1}> sin (72{21\/0‘1: n 1}), Ncrr = VNam (22b)
The tube model generally assumes that the branching point of the star chain is fixed in space until the
star arm fully relaxes, which leads to the use of 7, for the tethered chain in Eq. 22.

Here, a comment needs to be made for the dilute linear probes examined in Figure 5. In
principle, the CLF contribution specified above also needs to be considered for these probes.
However, all those probes have large N, (>24), so that their relaxation at co(r[flb < 100 (examined
in Figure 5) is dominated by the low-order CR—Rouse modes with the index up to p = 10 and is
negligibly contributed from the fast CLF modes. For this reason, those linear probes exhibit the
universal terminal relaxation that coincides with the CR—Rouse relaxation (solid curve in Figure 5).
(At low m(t[zGlb < 100, u(@)= @' ()/Bcr(®) = @' (H)Pcr(?) evaluated on the basis of Egs. 14 and 20 is
numerically indistinguishable from a reduced modulus { M,/N,puRT}Ger(f), with Ger(?) being
given by Eq. 8.) The situation is a little different for the star probes examined in Figure 6. Those star
probes have just moderately large N,,,, (=12 and 16), and their terminal relaxation is non-negligibly
contributed from the CLF modes. Because of this CLF contribution, the star probes exhibit less
universal terminal relaxation compared to the linear probes (cf. Figures 5 and 6), as explained
earlier.

Now, we compare Br.pp(f) and Ber(?) (= 1/Ycr(?)) for the monodisperse linear and star
chains examined in Figures 15 and 16. (ueprp(f) shown therein is equivalent to fprp(f) =
{WepTD(?) } 40+ ) For those chains, Tep g and Tog (= TéL = ZT[CGR; cf. Egs. 11 and 12 with M| =
M, = M) are known, so that the comparison can be straightforwardly made. The results are
shown in Figures 19 and 20, where the black arrows indicate the second-moment average
viscoelastic relaxation time of the monodisperse chain, (TE ]) (= product of the zero-shear
viscosity and recoverable compliance).

For the linear chains (Figure 19), Br.prp(?) (blue circles) agrees with Bcgr(?) (red curves) within
uncertainties of evaluation of these B (~10% for each) in the entire range of ¢ < <1:,[g ]>, namely,
during the whole process of viscoelastic relaxation. (For P 308k at long ¢ ~ (rl[f,; ] ), Beprp(?) tends to
become even smaller than Bcr(r).) Thus, the CR-Rouse dynamics allows the equilibrated
entanglement number [(f) to increase up to Beprp(f) considered in the full-DTD picture. For this
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FIG. 20. — Equilibration number of entanglement segments of monodisperse six-arm star PI assumed in the full-DTD

molecular picture, Br.prp(?) (blue circles). The maximum equilibration number allowed by the CR—Rouse mechanism,
Bcr(?), is shown with red curves. Black horizontal line shows the number of entanglements per star arm, Ny, Br.prp(f) and
Bcr(?) data are taken from Watanabe et al.>® with permission.

reason, the normalized viscoelastic relaxation function p prp(f) deduced from this picture agrees
with the i(#) data, as noted in Figure 15.

In contrast, for the monodisperse star chains, Br.prp(?) is significantly larger than Bcr(?) (by a
factor beyond the uncertainty explained above), and thus the CR—Rouse dynamics does not allow
the actual B(7) to increase up to Br.pp(?) atintermediate to long time scales (at # > 1072 s); see Figure
20. Consequently, Lr.ptp(f) deviates from the p(7) data at those 7, as noted in Figure 16. In fact, in
Figure 20, the failure of the full-DTD picture can be noted for B;.prp(?) itself: Br.prp(f) reaches its
maximum possible value, Byax = Nam (horizontal dashed line) corresponding to the full
equilibration of the whole arm, at ¢ considerably shorter than (rL? ]>, which does not allow the full-
DTD picture to work in the terminal relaxation regime. (In contrast, the CR-equilibrated number
Bcr(f) remains smaller than B, in the entire range of t < <TLC1; ]).)

Here, it is informative to consider how the full-DTD picture fails for the star chains and works
for the linear chains. For an arm of a given (probe) star chain, the fully dilated tube diameter
ar_prp’ (1) Ea{Broro(®) )} 2 =a{ @' (f)} %) is available as a length scale of equilibration in a time
scale of 7 thanks to the motion of surrounding star chains; however, this length scale is too large
for the CR—Rouse motion of the probe arm to explore within that time scale. Such an unusably
large as.prp’(¢) is a consequence of the broad relaxation mode distribution of the star chains that
significantly decreases @’(¢) at short z. In contrast, the monodisperse linear chains exhibit a narrow
terminal relaxation mode distribution that allows B¢ prp(?) to stay small and comparable to Bcr(?)
in the entire range of ¢ (cf. Figure 19): Brptp(f) = 3 < Neven at t = <r£§ ]>. This narrow mode
distribution, enabling the CR—Rouse motion to cover the length scale of arprp/(¢) in time, is the
reason for the validity of the full-DTD picture for the linear chains noted in Figure 15.

For the PI 308k/PI 21k binary blends, we can similarly examine validity of the full-DTD
picture. Specifically, Be.orp(?) (= { peor(®) )~/ with pe.prp(f) being shown in Figure 17) needs
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PI 308k/PI 21k, 40°C
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FIG. 21. — Equilibration number of entanglement segments in PI 308k/PI 21k blends assumed in the full-DTD picture, By

prp(?) (blue circles). The maximum equilibration numbers for the short and long chains (PI 21k and PI 308k) allowed by the

CR-Rouse mechanism, Bcg 1(f) and Ber 2(7), are shown with green and red curves. Horizontal lines show the number of

entanglements per short and long chains, Ny and N,. The plots are vertically shifted by the factors A as indicated so as to avoid
heavy overlapping. Data are taken from Watanabe et al.**>* with permission.

to be compared with Bcg 1 (7) and PBeg 2(7) defined for the short and long chains, P1 21k and PI 308k.
The comparison is made by separately considering the CR—Rouse times for the long and short
chains on the basis of empirical Eq. 11 and by taking into account a dielectrically detected moderate
retardation of the short chain relaxation due to the entanglement with the long chains.?” The results
of this comparison are presented in Figure 21. For simplicity, Bcr () and Pcro(f) used in the
comparison were evaluated just for the CR—Rouse relaxation, namely, with the aid of Eq. 20 but
without incorporating the CLF contribution.*> However, for the dominant part of the long chain
relaxation at long ¢, the CLF contribution is minor and the lack of this contribution in Bcg ;(¢) and
Bcro(?) is not important.

For the blends with a small volume fraction of the long chain, v,=0.1 and 0.2, Figure 21 shows
that B¢ prp(?) (blue circle) remains close to Pegr 1(f) (green curve) and Beg »(f) (red curve) at short
up to the terminal relaxation time of the short chain, r[ﬁ], (green arrow). (Note also that Bcg 1(7) in
that range of 7 remains smaller than its maximum posSible value, Ny, shown with the horizontal
green dotted line.) However, at intermediate r where the short chain has fully relaxed and only the
long chain sustains the modulus, B¢ prp(f) becomes considerably larger than Pcg »(#) so that the
long chain cannot explore, in time, the length scale of fully dilated tube diameter a¢prp’(f) =af By
pro(®)} 122 Nevertheless, at longer ¢ where Pcgr(f) approaches its maximum possible value, N,
(horizontal black dotted line), B¢ prp(f) becomes smaller than Bcgr 2(f) and the long chain can be
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equilibrated over the diameter a¢prp’(f) in time. For those blends, the failure of the full-DTD
picture is noted exactly in the intermediate time scale where B¢.prp(f) > Bcr 2(f); compare Figures
17 and 21 for v, =0.1 and 0.2. It should be noted that the rapid and intensive relaxation of the short
chain leads to a large decrease of @’(f) and a large increase of f;.prp(f) at t > 217[11 (cf. Figure 21)
thereby resulting in the failure of the full-DTD picture. This role of the fast relaxation of the short
chain in the blends with small v, is similar to that of intensive fast relaxation of the star chains having
a broad mode distribution. Consequently, the blend with larger v, =0.5 exhibits less intensive fast
relaxation of the short chain so that its fr.prp(f) is only slightly larger than Bcg »(7) at intermediate
time scale (cf. Figure 21), which results in just slight failure of the full-DTD picture for this blend
(Figure 17). Finally, for v,=1 (bulk PI1308k), B¢.prp() < Bcro(?) and thus the full-DTD picture is
valid in the entire range of 7 up to the terminal relaxation time of the long chain, t[ZGE, (red arrow); cf.
Figures 17 and 21. 7

The results of the test of the full-DTD picture presented in Figures 19-21 clearly indicate that
the full-DTD picture fails in the range of r where Br.prp(f) > Bcr(f). However, the test does not
rule out the tube dilation up to Bcr(?). In fact, direct comparison of the viscoelastic and dielectric
data of monodisperse PI unequivocally indicates that the entanglement is not fixed in space (cf.
Figure 3). Namely, in the terminology of the tube model, the CR/DTD process undoubtedly
occurs for the monodisperse polymers. Thus, a molecular picture of partial-DTD is naturally
introduced as**33-!

for monodisperse polymers: B,_prp(¢) = min[B¢_prp(2), Ber (1)) (23)

The corresponding survival fraction of the partially dilated tube, ¢’(¢), is evaluated from the
dielectric ®(¢) data and the Tt data (= rg{ = ZT[CGQ; cf. Egs. 11 and 12 with M| =M, =M): the tcr
data give Bcr(f) = 1/\cr(?) through Egs. 20-22, and Egs. 15 and 16 combined with Eq. 23 allow us
to determine ¢'(f) and B, prp(?) from the Pcg(?) value and the ®(7) data.>>"! The viscoelastic Hp-
pro(?) for the partial-DTD picture is simply given by Eq. 14 with B(f)= B, prp(?). In Figures 15 and
16, Lp-pro(?) thus obtained is shown with the red curves. For monodisperse linear PI, B¢ prp(f) <
Ber(®) (cf. Figure 19) so that W, prp(?) coincides with iy prp(#) and excellently describes the p(f)
data (cf. Figure 15). For monodisperse star PL, i, prp(?) is considerably larger than L. prp(#) and
agrees well with the p(7) data (cf. Figure 16).

For the P1308k/PI 21k blends, the above partial-DTD picture is extended to separately evaluate
Bp-prp(?) for the short and long chain components (in a way corresponding to that explained for
Figure 21), and the resulting [\t prp(?) is shown in Figure 17 with the red curve.* This Heprp(f)isin
excellent agreement with the u(f) data.

All above results indicate that the partial-DTD picture (including the full-DTD picture for the
case of Br.prp < Pcr) is valid for monodisperse PI as well as blends of linear PI. The success of the
partial-DTD picture has been confirmed also for Cayley-tree type branched PL>° The success of the
partial-DTD picture indicates that the tube dilates (i.e., the entanglement loosens) to the maximum
length scale allowed by the motion of the tube-forming chains and by the CR motion of the probe
chain in a given time scale. In other words, the DTD picture is valid given that the length and time
scales are consistently coarse-grained, as noted in Figures 19-21.

It is the comparison of dielectric and viscoelastic data that revealed the success of the partial-
DTD picture for describing the entanglement dynamics. This success in turn demonstrates the
importance of the comparison of those data. In fact, the comparison is useful also for dipole-
inverted PI: coherence of the chain motion in entangled bulk and lack of this coherence in
unentangled solutions have been successfully deduced from comparison of the viscoelastic and
dielectric data.”®
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FIG. 22. — Viscoelastic and dielectric data of PI 43k/PI 1.1M blend (v; =0.1) at 40 °C. Data are taken from Matsumiya et
al.*” with permission.

E. DUALITY OF TUBE FOR RELAXATION TIME AND RELAXATION INTENSITY

For entangled PI having the type-A dipoles, the relationship between the viscoelastic 1(f) and
dielectric @(r) data is in accord to the partial-DTD picture that makes consistent coarse-graining of
the length and time scales according to the CR—Rouse dynamics, as demonstrated in the analysis
shown in Figures 15—-17 and 19-21. However, this picture just describes the relationship between
the p(r) and @(¢) data (the latter giving @’ (¢)) and does not specify the ¢ dependence of those data. For
the terminal relaxation time characterizing this ¢ dependence, the DTD effect has been examined
through comparison of the data for PI probe in high-M PI matrix and in monodisperse bulk.>”** The
results are summarized below.

1. Viscoelastic and Dielectric Data of Linear PI Probe in DTD-Free Environment. — Figure
22 shows viscoelastic and dielectric losses, G” and &”, measured for a PI 43k/PI 1.1M blend
containing dilute linear PI 43k probe (v; =0.1).*” The blue triangles and black circles represent the
data of PI 43k and PI 1.1M in respective monodisperse bulk. The probe relaxation in the blend is
clearly detected as the peak of the G” and &” data at high ; see red circles. This relaxation is
observed also for the G’ and {gy— ¢’ } data, but much less clearly because these data are less sensitive
to fast and weak relaxation of the probe compared to the G” and &” data.?’ For this reason, the
following discussion focuses on the G” and ¢” data.

Asnoted in Figure 22, the probe relaxation is slower in the blend (in the high-M matrix) than in
its monodisperse bulk, which suggests that the CR mechanism for the probe is suppressed in the
blend. For quantitative discussion of this suppression, the blend data need to be decomposed into
the contributions from the probe and matrix (short and long chains). This decomposition can be
made on the basis of a general blending rule for the viscoelastic and dielectric loss data of the blend,
G/ (0) and &, (®):’

Gy (@) = 01G{(®) + 012G} (w) (24)
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& (©) = V1g],(®) + V287, () (25)

Here, G,,,”(®) and &,,,” (o) represent the viscoelastic and dielectric losses of the long (matrix)
chain in the blend reduced by its volume fraction v,, and G,;,” (®) and €,;,” (®) are the losses of the
short probe reduced by v; (=1 — v,). G,,,"(®) and &,,,"(®) do not coincide with G,,,,"(®) and
€,m” (®) of the pure matrix (black circles in Figure 22) because of the partial relaxation of the long
matrix chains activated by the short probe motion. However, for the blend with small v, (=0.1 in
Figure 22), we can satisfactorily express Go,;,”(®) and &,,,"(®) in terms of the G,,,"(®) and
€2.m” () data to evaluate Gy,,"(®) and &;,,”(m) of the probe of our interest, as explained below.>’

The top panel of Figure 22 shows that the probe (PI43k) in the blend has fully relaxed at high ®
>~ 105", and the corresponding probe motion activates partial viscoelastic relaxation of the matrix.
Consequently, the terminal relaxation of the matrix (and the blend as a whole), seen at much lower
, is faster and less intensive compared to that of the pure matrix. This feature enables us to express
G,,;,”(®) of the matrix in the terminal relaxation zone in terms of the G,,,,,”(®) data of the pure
matrix (black circles in the top panel of Figure 22) as

Gsmind 7o) = LGy, (MW w) (26)

The factors I, and l[zc] represent the fractional intensity reduction and acceleration of the terminal
relaxation of the matrix in the blend. Validity of Eq 26 is noted in the top panel where the green
curve shows the shifted data of pure matrix, 12G2 m(k[ ](o) with the factors I, = 0.89 and X[ZG] =
0.89.%” This green curve excellently describes the Gb”(w) data of the blend at low ®.

At high ® where the probe of our interest (PI 43k) is still relaxing, G“frmmal”(m) given by Eq.
26 should differ from the actual loss modulus G,,,”(®) of the matrix in the blend, because the
matrix entanglement with the probe chains has not fully relaxed at those ®. At such high w, the
matrix partially relaxes viscoelastically together with the probe. Then, the loss modulus
difference of the matrix representing this partial relaxation, AG,,,” (®) = Ga,," (®) — G‘z‘i{)‘“i“al "(w),
should be close to G1,,”(w) of the probe in the blend, except that the relaxation intensity is smaller
for AG,,,,” () by a factor of 1 — I, (because the fraction I, of the intensity relaxes at low o as
represented by Gterm‘“al”(oo)) Thus, substituting G,,;,"(®) = AG,,," () + G‘ermmal”(m) ~(1-—
)G, () + Isz,m”O» 0)) in Eq. 24, we can express G1}"(®) of the probe in terms of the
Gy (®) and G,,,," (o) data of the blend and pure matrix as

1

G/ (o) —
l‘b( ) 1—1)2]2

{G1(0) = 02164, (1 0)} (27)
(Note that a modulus difference corresponding to the above AG,,,” (®) does not appear in Eq. 6 for
short matrix chains in the blends examined in Figures 4—6 because those short chains are the major
component therein and fully relax within a time scale of the long—short entanglement relaxation.)

The situation is much simpler for dielectric €;,,” (®). In general, the dielectric relaxation mode
distribution (shape of &” curve) of linear PI is insensitive to CR/DTD.**?***33 I the bottom panel
of Figure 22, this insensitivity is noted as the similarity of the ® dependence of ¢” data of the P1 43k/
PI 1.1M blend, bulk PI 43k, and bulk PI 1.1M (matrix) at ® > 300 s~ '. Thus, the reduced dielectric
loss of the matrix appearing in Eq. 25, €;,p, (m% is satlsfactorlly expressed in terms of the &,,,," (®)
data of the pure matrix as €,,"(®) =€2,m" (A, ®), where X Y is the acceleration factor determined
for the viscoelastic data. Then, the reduced dielectric loss of the probe PL, g,,,” (®), is experimentally
evaluated as®’ (cf. Eq. 25)

£fu(0) = {5 (0) — vos 050)} (28)
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FIG. 23. — Comparison of G, " (unfilled symbols) and €, ,” (filled symbols) of linear PI probe entangled with PI 1.1M
matrix at 40 °C. The volume fraction is vy =0.2 for PI 179k probe and v; =0.1 for the other three probes. Data are taken from
Matsumiya et al.*” with permission.

Figure 23 compares G1,;,”(®) (unfilled symbols) and €;,,,” (®) (filled symbols) of short probe chains
entangled with lon? matrix (PI 1.1M) thus evaluated from Eqgs. 27 and 28. 37 k[zG] =0.94 for the PI
179 probe, and k =0.89 for the three other probes. For direct comparison, &;,,”(®) is multiplied
by afactor of 10A in order to match its peak height with that of G1,;,” (@), and a contribution from the
intrinsic, local Rouse relaxation within the entanglement segment has been subtracted from
G1,p" (). (€1, (®) does not have this contribution.) The volume fraction is v; =0.2 for the PI 179k
probe, and v, =0.1 for the other three probes, PI 21k, P1 43k, and PI 99k. Judging from the effective
molecular weight associated to the probe—probe (short—short) entanglement, M, ,,=M_ puik p1/V1 13
=41k (for v; =0.2) and M. ,, = 100k (for v; =0.1), the P 179k probe chains are mostly entangled
with the PI 1.1M matrix but also among themselves moderately, whereas the three shorter probes
are entangled only with the matrix.

Here a comment needs to be added for the probe losses shown in Figure 23. The matrix losses
Gz,m”(K ](D) and £, ”(7\ ](D) subtracted in Egs. 27 and 28 are the extrapolation of the viscoelastic
and dielectric losses of the matrix at low @ (where the probe has fully relaxed) to high ® where the
probe is still relaxing. Before completion of the probe relaxation, the matrix would behave more or
less similar to that in monodisperse bulk, and its actual losses should be smaller than Gz,m”(k 0))
and az,m”(k m) appearing in Egs. 27 and 28. Thus, G,,;,"(®) and €,;,”(®) shown in Figure 23
should be regarded as the smallest possible viscoelastic and dielectric losses of the probe in the
blend. Nevertheless, the largest possible losses obtained from Eqs. 27 and 28 with 7» 1 were only
slightly larger than those shown in Figure 23, as demonstrated in Matsumiya et al This close
commdence of the smallest and largest possible loss values, reflecting the 7“[2 I value close to unity>’
(7» > 0.89 for the matrix entangled with the four probes examined in Figure 23), enables us to
reliably use G1,;,”(®) and g1,,”(®) shown in Figure 23 as the real losses of the probes.

For the PI 21k and P43k probes, G,,;,” () agrees surprisingly well with 10%g;,,” (o) to satisfy
Eq. 5b, as clearly noted in Figure 23. This experimental fact indicates that the matrix—probe (long—
short) entanglement constraining the probe motion is fixed in space in the time scale of the probe
relaxation. Namely, these two probes relax in the DTD-free environment. In fact, the ® dependence
of their Gy,;,” () and €1,,” (@) is very close to that expected for a chain being trapped in a fixed tube
and relaxing through reptation and CLF; Gyepeycrr” ~ ErepricLE” ~ o "*athigh ©."* For the P1 99k
probe, the G1,,"(w) and 10%¢,,,” () data are slightly different around their peaks, which indicates
that the DTD mechanism is not perfectly quenched for this probe entangled with the PI 1.1M matrix
(because M, of the matrix is not sufficiently larger than M of the probe). Finally, for the PI 179k
probe having a larger M;, a moderate deviation is clearly noted between G,,”(®) and 10%¢,,,” (),
although this deviation is much less prominent compared to the deviation seen for monodisperse
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linear PI in bulk; see the top panel of Figure 3 where G” and &” exhibit significant differences not
only in their relaxation mode distribution but also in the peak frequency. This moderate deviation
seen for the PI 179k probe emerges because the matrix—probe entanglement relaxes to some extent
in the time scale of probe relaxation to activate DTD for the probe (and because the moderate probe—
probe entanglement also relaxes to activate DTD).

2. Relaxation Time in DTD-Free Environment.— In relation to the validity of the DTD picture
discussed for Figures 15—17, it is informative to examine the magnitude of acceleration of the
relaxation due to DTD. For monodisperse linear PI chains, the full-DTD relationship (Egs. 14 and
17)is valid between the viscoelastic p(f) and the dielectrically evaluated tube survival fraction ¢’(z),
as revealed in Figure 15. This validity reflects the narrow relaxation mode distribution of the linear
chains that allows the number B(¢) of the equilibrated entanglement segments to stay small; in
Figure 19, B(¢) associated to the terminal viscoelastic relaxation is evaluated as 3, = 3 (log 3,, > 0.5)
atr= <‘ELC,; ]> for all linear PI samples examined.

If the relaxed portion of the chain behaves as a solvent in all aspects of the relaxation dynamics
of monodisperse linear PI chains (i.e., not only for the relationship between p(f) and ¢’(7)), then the
terminal relaxation time of the monodisperse linear PI chain, T ~ M3‘5/M 15 is naively expected to
increase by a factor of :L 5 ~ 5 when the CR/DTD mechanism working in the monodisperse bulk
system is quenched. (The effective entanglement molecular weight determining the relaxation time
should be proportional to By, if the relaxed portion behaves as the solvent in all aspects.) In the
following, this expectation is tested with the aid of the data shown in Figure 23.

For the PI probes examined in Figure 23, we can evaluate the viscoelastic and dielectric
relaxation times, t[lG,l and t[f]b, as reciprocal of the peak frequencies of the G,;,”(®) and €,,"(®)
data. (The correspbnding ‘Zstorage parts” of those probes, Gi,;,/(®) and g,,'(®), cannot be
accurately evaluated because G}, () and Ag,,’ (o) data of the blends are rather insensitive to the fast
and weak relaxation of the probes having small v; (=0.1 or 0.2). For this reason, the second-moment
average relaxation time (cf. Eq. 7) cannot be used in the discussion below.) From the Gy, ,,"(®) and
€1,m’ (@) data of the probes in the monodisperse bulk state, the relaxation times t;,, and T/ are
similarly evaluated as reciprocal of the peak frequencies. The relaxation mode distribution of

f’b//(mf in the blends agrees with that of the €;,,”(®) data of monodisperse bulk PL> so that the
Ti'h / ’E[l ‘m Tatio is equivalent to a ratio of the longest dielectric relaxation times in the fixed and
unfixed entanglement environments. This is not the case for the viscoelastic data: the mode
dlstnbutlon is narrower for Gy,;,”(®) than for Gy,,,"(®) (cf. Figures 22 and 23), and thus the
T[thl /T I]n ratio should be somewhat different from (larger than) the ratio of the longest viscoelastic
relaxation times. However, this small difference does not affect the following discussion that
mainly focuses on the dielectric T[1 /Tl ]m ratio.

For the four PI probes examlned in Figure 23, Figure 24 shows plots of the T1 b / T, ., and
r] b / thr]n ratios evaluated above®’ against the entanglement number per probe chain, M,/M, (_4 2-
35.8); see green circles. For comparison, black squares show the ratios obtained for shorter, lightly
entangled probes in their bulk and in the PI 1.1M matrix (after minor correction of the monomeric
friction in bulk).*® The red curves are the results of CR—Rouse analysis explained later. The high-M
matrix should have no effect on the relaxation time of unentangled probe if the monomeric friction
is kept constant, whereas the matrix effect (suppression of CR/DTD) should become prominent for
the entangled probe. This behavior is clearly noted in Figure 24 on the 1ncrease of M 1 /M from 1 to
~4. A further increase of M /M. results in gradual decreases of the 171 b / tl m and T1 b / T r]n ratios, and
thus the matrix effect becomes less prominent with i 1ncreas1ng M,/M; see four green circles.

In the entire range of M;/M., the dielectric rl b / T ]m ratio (top panel of Figure 24) is

%mﬁcantly smaller than the naively expected ratio explamed above, rE b / rllm ~ Bl S5 (log
rl b / Ty m = 0.7). This experimental fact indicates that the relaxed portion of the chams does not
behave as a solvent with respect to the end-to-end relaxation time of the probe, despite the fact that
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FIG. 24. — Relaxation time ratios r[lc]b / ng]m and 'c[ﬁl / r[]G‘L experimentally evaluated for PI probes in the blends with PI 1.1 M
matrix and in monodisperse bulk at 40 °C. Red curves show the results of CR—Rouse analysis. Note that the full scale of the
vertical axis in the bottom panel is twice of that in the top panel. Data are taken from Watanabe et al.*’~ with permission.

the viscoelastic pu(r) data and the dielectrically evaluated ¢’(7) of monodisperse linear PI obey the
full-DTD relationship (cf. Figure 15). This relationship is just based on the molecular picture that
the relaxed portion of the chains, having the fraction 1 — ¢@'(¢), widens the entanglement mesh
(modeled as the tube) to the level in a solution having a concentration ¢’(¢). Namely, the full-DTD
relationship does not specify anything related to the chain motion in the dilated tube over a length
scale greater than dilated tube diameter. In contrast, the naive expectation is based on an assumption
that the chain moves along the dilated tube with its intrinsic friction. Thus, the deviation between
the r[ﬁ]b / r[f]m data and the expectation is not contradictory to the validity of the full-DTD relationship
between L1(¢) and ¢’(7) but suggests a hypothesis explained below.

- / \/\f-\' \a
\""'i—’/_\\? ‘
FIG. 25. — Tllustration of dual tube for a linear chain in monodisperse bulk. The a is the diameter of undilated tube, and a’ is the

diameter of fully dilated tube that specifies the range of lateral motion of the chain to describe the extra modulus decay due to
DTD. A tube specifying the longitudinal motional path of the chain has the diameter a* (<a’) and wriggles in the dilated tube.
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From the above deviation, the linear PI chain in the monodisperse bulk appears to be
longitudinally moving not along the fully dilated tube but along a thinner tube that wriggles in the
fully dilated tube, as illustrated in Figure 25. The dilated tube, being introduced as a model to
represent the loosening of the entanglement constraint, seems to have a dual structure.>’ A wide
tube having the diameter a’ describes the constraint for the chain motion in a direction lateral to the
chain backbone, thereby describing the extra decay of the viscoelastic modulus on the entanglement
loosening (by the full-DTD factor of {a/a’ }2 ={¢’ }‘1 for monodisperse linear chains). In contrast, a
thinner tube having the diameter a* (with a < a* < a’) specifies the longitudinal motional path of
the chain that determines the dielectric relaxation time T[ﬁm =end-to-end fluctuation time), and the
wriggling motion of this path tube in the wider tube allows the lateral equilibration over the length
scale of a’ and the corresponding modulus decay to occur. Within this hypothesis, the viscoelastic
relaxation time r[lGr]n is affected by this modulus decay on the entanglement loosening, and thus the
suppression of the loosening (i.e., blending in the high-M matrix) increases the viscoelastic ’C[]G] of
the probe more significantly than the dielectric tgg , which is consistent with the observation in
Figure 24. In the following, the dual tube hypothesis is tested through a simple CR—Rouse analysis.

3. CR—Rouse Analysis of Relaxation Time.>” — We here focus on the dielectric relaxation time
(end-to-end fluctuation time) r[f]m of the linear PI chain in its monodisperse bulk. This r[f]m is
assigned as the time required for reptation (after CLF) along the motional path tube having the
diameter a* (cf. Figure 25). For this reptation to occur, all dilated segments of the size a* should
balance their tension through simultaneous CR-equilibration because of the coherent nature of the
reptative motion. This simultaneous CR-equilibration occurs through accumulation of local CR-
equilibration in all dilated segments.

The number of those dilated segments per chain is given by N* =N/ p*, where p* = (a*/a)” is
the number of entanglement segments per dilated segment. Among N entanglement segments of the
chain, N* segments (one for each dilated segment) remain as independent segments specifying the
spatial position of the dilated segments, so that the number of entanglement segments to be involved
in the simultaneous CR-equilibration is given by

§=N-N/p*+1 (29)

Here, the extra factor of “1” has been introduced to satisfy two extreme conditions, g=N for f*=N
(for CR-equilibration of all entanglement segments) and g=1 for f*=1 (for the case of no dilation).
The extra factor is necessary to satisfy those conditions but hardly affects the result of the following
analysis because the analysis gives g > 1 for large N.

For the reptation (after CLF) along the longitudinal motional path tube of the diameter a* to
occur in time, the characteristic time for the simultaneous CR-equilibration of g entanglement
segments, Tsm.cr, should not exceed the longest dielectric relaxation time Tfm corresponding to
this reptation. This Tg,,.cr is dependent on g and thus on B* (={a*/a }2); cf. Eq. 29. Because the tube
would be dilated to the maximum possible diameter, B* for a linear PI chain in the monodisperse
bulk can be determined from a condition,

Tsim-CR = T [ls]m (30)

The simultaneous CR-equilibration of g entanglement segments in the monodisperse bulk
corresponds to p*-th CR—Rouse mode therein, with the mode index p* being specified as®’

1 (N—2M+1( g

—=——"5—(—ZforN>» 1) 31

p* (N—1)? N (3D
For N > 1, p* is given by N/g as simply expected from the number of entanglement segments
involved between nodes of sinusoidal CR—Rouse eigenfunction. From consideration of two

$S900E 981) BIA 0¢-| |-GZ0Z 1e /woo Alojoeignd-pold-swiid-yewssiem-1pd-awiid//:sdiy woil papeojumoc]



56 RUBBER CHEMISTRY AND TECHNOLOGY, Vol. 93, No. 1, pp. 22-62 (2020)

monodisperse linear PI

L5}
14}

*

QI3+
12}
L1}

0 0.5 1 1.5 2
log M/M,

FIG. 26. — Number B* of the entanglement segments per dilated segment of the size a* at the longest dielectric relaxation
time r[f]m experimentally evaluated through CR-Rouse analysis for monodisperse linear PI at 40 °C. Data are taken from
Matsumiya et al.>” with permission. For further detail, see text.

extreme conditions, p*=1 for g=N and p*=N— 1 (the highest CR—Rouse mode index) forg=1, the
main expression in Eq. 31 is obtained as a minor correction of the case of N > 1.>7 Using p* thus
specified as a function of g and N, Tgm.cr is expressed in the CR—Rouse form as

[¢]
. ] 2 T\ o P TeRm |
Tsim—CR = TR pSIN (ZN) sin <_2N> <—> 2 if p* < N (32)

Here, ‘ECRm = 2’ECR ) is the longest dielectric CR time for the monodisperse bulk PI specified
experimentally by Eq. 11 with M; =M, =M. From Eqs. 30 and 32 together with the data of ‘E[l]m
(=4.2X 10 "M>7 s; determined from the £” peak frequency for entangled monodisperse linear PI at
40 °C*7), we can evaluate the CR mode index p* and further convert this p* into the number of
entanglement segments involved in the simultaneous CR-equilibration, g (cf. Eq. 31).

The number B* of the entanglement segments per dilated segment of the size a* at 1= ‘r[f]m i
directly obtained from the g value thus determined (cf. Eq. 29). Figure 26 shows changes of f* with
the entanglement number M/M,, (= N) of monodisperse linear PI in bulk. f* gradually decreases
with increasing M/M,, but does not reach its asymptote (f* = 1) even at M/M. = 100. This result
suggests that the dielectric relaxation time 1:[1 ]m is still affected by the CR/DTD mechanism even in
such a well- entangled state (which gives a proof against CR/DTD-independence of r[] ]m argued in
the literature®%). More importantly, p* defined for the longitudinal motional path of the chain is well
below the number B, = 3 of the laterally equilibrated entanglement segments. This difference
between * and f,, lends support to the hypothesis of the dual structure of the tube illustrated in
Figure 25: a* = a B*'* < a' = aBl/ 2 in the time scale of terminal relaxation so that the tube
specifying the longitudinal motional path of the chain wriggles laterally in the wider tube (with the
diameter a’), the latter describing the extra decay of viscoelastic p(¢) due to DTD.

Now we examine the dielectric 7 / r[f]m ratio of linear P probe in the high-M matrix (PI 1.1M)
and in the monodisperse bulk. Because the local friction of the entanglement segment, (., is the
same in these two environments, this ratio is simply given by

T[e]

= p*!? (33)
Tl ,m

(Note that ‘tl o LM s/Me o and B* is equivalent to the ratio of the effective entanglement
molecula.r welght for the chain motion, M. g, in the monodisperse bulk and in the high-M matrix.)

The ! b / rl m ratio thus evaluated from * (Figure 26) is shown in the top panel of Figure 24 with the
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red curve. This curve excellently describes the ‘cl b / ) m data for the moderately- to well-entangled
PI probes (green circles).

Furthermore, the viscoelastic relaxation time ratio is simply evaluated as T[G] o/ r[G] =2
because r[lGll = r[l]b in the DTD-free high-M matrix (as noted from the agreement of the Gi,p" and
€1, data for short probes; cf. Figure 23) whereas 19 ~ —‘El m /2 in monodisperse bulk as confirmed
experimentally.?*>%343337 The viscoelastic Tip /Ty m ratio thus deduced, shown with the red curve
in the bottom panel of Figure 24, is surprisingly close to the data (green mrcles)

The above success of the simple CR—Rouse analysis for the ‘L'l b / T, ]m and rl b / T1 m | ratios, noted
also for star PI*® (for which the motional path tube is wriggling in a partially dilated tube describing
the p(¢) data in Figure 16), lends support to the hypothesis of the dual tube structure. It should be
noted that the CR—Rouse analysis for the linear PI chain just considers the consistent coarse-
graining of the length and time scales together w1th the coherent nature of the reptative motion.
From that success we expect that the dielectric ’Cl b / T ]m ratio approaches unity, whereas the
viscoelastic 1:| s / T 111 ratio (= 211 b /7 T m) approaches 2 for the linear PI chain in the h1 h- M limit
(although this limit is not covered by experlments) This behavior of the viscoelastic T1 b / r, m | ratio
corresponds to the Viovy—Rubinstein—Colby®? (VRC) scenario considering reptation along the
undilated tube that laterally wriggles in the dilated tube. We also note a consequence of this VRC
scenario for highly entangled blends of linear chains: we expect that the terminal viscoelastic
relaxation of concentrated long chains therein is not accelerated by the short chains but the decrease
of its intensity (decrease of the long—long entanglement plateau modulus at low ) scales as 1)1+d
with d = 1.3, whereas the terminal viscoelastic relaxation of the short chain is retarded by the long
chains (by a factor of 2 if the short chain is dilute). Indeed, this expectation is in accord with the G*
data of highly entangled polybutadiene blends reported by Struglinski and Graessley (see figure 9 of
Struglinski and Graessley®?).

%15
)

F. COMMENTS ON RECENT THEORETICAL MODEL/ANALYSIS

This article adopts an experimental viewpoint as much as possible to review the results of
analysis of the viscoelastic and dielectric data reflecting the CR/DTD process. Nevertheless, it is
also informative to add brief comments for recent theoretical model/analysis of the CR/DTD
process®*01:6+6% and for a feature of the interchain constraints (observed as the entanglement) °¢~7°
that can be related to the tube dilation exponent. Those comments are summarized below.

1. Tube Dilation Exponent and Feature of Interchain Constraint. — The value of the tube
dilation exponent d has been a long-standing subject of theoretical discussion.®*®! Van Ruymbeke
and coworkers® focused on blends of long and short linear chains to conclude, from a theoretical
argument for the binary nature of entanglement (resulting from the pair-wise constraint between the
chains), that d should be 1 just after the relaxation of entanglement of the long chain with the short
chain. They also considered that the CR-activated tension re-equilibration®® follows this long—short
entanglement relaxation to effectively increase d up to 4/3 (= 1.3).%° Their model, deduced from
this consideration, well describes the viscoelastic data of the P1 308k/PI 21k blends (cf. Figure 14 of
this article) by using the dielectric data as the reference.®® Later, they refined their model based on
the time marching algorithm, and this refined model describes both dielectric and viscoelastic data
of the PI 308k/PI 21k blends simultaneously (i.e., without using the reference data) as well as
viscoelastic data of other blends.®*

Larson and coworkers®! examined the terminal viscoelastic relaxation time of “solutions” of
high-M monodisperse star polybutadienes (PB) in much shorter, unentangled PB. They focused on
very strong dependence of this relaxation time on an effective number of entanglements per star
arm, Ny = UgMarm /Me_pu With v, being the volume fraction of the star, and concluded that the
relaxation time is more universally dependent on N, calculated with d=1 than on N,,,, with d=4/
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3. This conclusion suggests that the ferminal relaxation of star PB solutions is better described with
d =1 rather than with d=4/3, although a considerable scatter (by a factor of ~10) is noted for the
relaxation times for different sets of M,,,, and v, giving the same value of N, for d=1; see figures
9-12 of Larson et al.®! (where several different values of M, were examined for each star PB
sample).

We note an important difference in the d values explained above: for the entangled blends of
linear PI chains, van Ruymbeke and coworkers®*®* deduced an increase of the effective d from 1 to
4/3 with increasing ¢, namely, the effective d value of 4/3 in the terminal relaxation regime. In
contrast, for the entangled star PB solutions, Larson and coworkers®! deduced d=1 in the terminal
regime. This difference might reflect dual (dynamic and static) aspects of the dilation exponent, as
discussed by Larson and coworkers.®' At the same time, one might also suspect that the d value
changes with either the chemical structure or the topological architecture (or both) of polymers. The
data for highly entangled blends of linear PB (chemically identical to the star PB examined by
Larson and coworkers®") unequivocally suggest d = 1.3 in the terminal regime; see the data for 411/
435L blends in figures 9 and 12 of Struglinski and Graessley.® Thus, the d value might change with
the topological architecture of the chain, or more specifically, with the basic mechanism of
relaxation (reptation or arm retraction) determined by this architecture, as judged from the
difference of the d values for the linear PI blends and the star PB solutions. A further study is desired
for this problem.

Now, we turn our attention to a correlation between the d value deduced by van Ruymbeke and
coworkers,’*®* =1 and 4/3 at short and long 7, and the d value (= 1.3) incorporated in the partial-
DTD picture explained in this article. These two sets of the d values are not necessarily contradicting
to each other, because the partial-DTD modulus p, prp(?) in this picture is affected by the d value
only in a range of t where Brprp(f) = {(p/(t)}_d < Ber(®) (cf. Eq. 23). This point can be further
examined for PI blends with small v,, for example, the P1 308k/PI 21k blend with v,=0.1 examined
in Figures 17 and 21. In a wide range of ¢ where the short PI 21k chains in the blend have fully
relaxed but the long PI 308k chains still exhibit a plateau of p(f) due to the entanglement among
themselves, Br.prp(?) exceeds Pcr2(#) of the long chain (cf. Figure 21) so that the partial-DTD
modulus i, prp(?), well mimicking the u(7) data, is significantly larger than the full-DTD modulus
Meprp(?) (cf. Figure 17). In that range of ¢, p, prp(?) is contributed only from the long chain and
expressed as> Up-prD() = @' (1)/Bcr 2(7). This expression does not include the dilation exponent,
but we can still define an apparent exponent d,p,, for W,.prp(f) and Begr »(7) as

Mo pro (1) = {0/ (1)}, Bera (1) = {@' ()} (34)

This d,,, changes with ¢, and p, prp(f) and Ber o(#) of the PL308k/PI1 21k blend with v, =0.1 (shown
in Figures 17 and 21) give dpp, =0.98 and 1.3 at t = 1072 and 107" s, respectively. Namely, the
partial-DTD picture for the PI blend gives d,pp that increases from =1 to 1.3 with time (after the
relaxation of the short chain component), which is essentially the same as the evolution of d
considered in the model by van Ruymbeke and coworkers.®*®* Nevertheless, it should be
emphasized that d,p,, is just an apparent dilation exponent, and the partial-DTD picture does not give
the power-law relationship, Eq. 34, in the range of r where B¢.prp(f) > Bcer.2(0)-

Concerning this point, we would like to add that the experimentally observed difference of the
CR relaxation behavior of chemically different PI and PS probes (Figures 11 and 12) well fits in the
partial-DTD picture through the chemistry-dependent number z of local constraints per
entanglement considered in Graessley’s CR—Rouse model.** It is not clear if this difference of
the CR behavior due only to the chemical difference is straightforwardly deduced within the CR—
Rouse model given that the entanglement exclusively results from the binary (pair-wise) constraint
corresponding to d = 1.
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For this problem, it would be informative to briefly visit the results of molecular dynamics
(MD) simulations. Everaers and coworkers®® made the primitive path analysis based on the MD
simulation to visualize interchain hooking (or nodes) attributable to the binary entanglement and
demonstrated good agreements between the plateau modulus deduced from this analysis and the
literature data. Such nodes, defined in a static (and statistical) sense, are observed also in
simulations with different algorithms, for example, the “contour reduction topological analysis” by
Tzoumanekas and Theodorou®” and the “direct topological analysis” by Kroger and coworkers.®®
At the same time, the simulation by Likhtman and Ponmurugan® revealed that (coarse-grained)
chains form mutual contacts in a dynamic sense at many places along their backbone, and these
contacts are tight and long-lived. Likhtman° further showed that those contacts involve both binary
and ternary entanglements.

Summarizing these simulation results, one may arrive at a hypothetical molecular view that the
interchain constraint has static and dynamic aspects, and both binary and multiple-chain constraints
can be dynamically observed as the entanglement: probabilities of forming respective constraints
may change according to the chemical structure and topological architecture of the chain. Within
the context of the tube model incorporating the CR/DTD mechanism, this molecular view could
lead to the (effective) dilation exponent d > 1 in the terminal relaxation regime where both binary
and multiple-chain constraints loosen to dynamically dilate the tube. This possible scenario of d is
an interesting subject of research, but a further discussion of it goes well beyond the scope of this
article emphasizing an experimental viewpoint for analysis of the viscoelastic and dielectric data. A
rigid theoretical study is desired for the behavior of d (and for the underlying molecular view).

2. Duality in Description of Reptation along Tube. — In relation to the reptation along the
motional path tube (cf. Figure 25), a comment needs to be made for the local friction of the
entanglement segment, .. In the CR—Rouse analysis (Eqs. 29-33), (. is treated as the intrinsic
friction being identical in the high-M matrix (CR/DTD-free environment) and in the monodisperse
bulk. This treatment is consistent with the definition of the friction for the chain motion along the
motional path tube having the diameter a*. However, as an equivalent treatment, we may also
introduce an effective friction (. ¢ for the chain motion along the partially/fully dilated tube having
the diameter a’ (>a*). This dilated tube specifies the range of lateral equilibration of the
entanglement segments corresponding to the DTD relaxation of viscoelastic p(f), and the motion
along the dilated tube requires a waiting time f,, for an extra tension equilibration along it. This
waiting time can be cast as an increase of (. ofr (>C.). Thus, there is a duality in description of the
chain motion, for example, reptation along the motional path tube with the diameter a* (cf. Figure
25) occurring with the intrinsic ., or, reptation along the dilated tube with the diameter @’ occurring
with . .. These two types of reptative motion should give the same p(z) at r > ¢, and the same
terminal relaxation time.

In fact, an analysis of the waiting time #,, in blends of linear PI well describes the relaxation time
of the long and short chains therein®® (to an extent similar to that seen in Figure 24). More
quantitatively, van Ruymbeke and coworkers® analyzed t,, in their model to excellently describe
not only the relaxation time but also the frequency dependence of the G* and ¢” data of those linear
PI blends. They further extended their model to entangled blends of star and linear chains (while
keeping the analysis of t,,) to describe the G* data of the blends.®® Read and coworkers>* made
detailed analysis of (. . (equivalent to t,) to specify several different regimes to be added in the
Viovy—Rubinstein—Colby (VRC) diagram®* and compared their results with experimental data and
simulation results. Their analysis needed a hypothetical reference state where the intrinsic .
governs the reptation along the tube; this reference state cannot be the monodisperse bulk wherein
the CR/DTD mechanism is already operating. Except this point, their analysis allows us to test
differences in the modes of relaxation in the VRC diagram in a purely experimental way.
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The above duality in description of chain motion along the dilated tube is a natural consequence
of coarse-graining." That is, if we average the chain conformation over every t,, the chain would
look like a fuzzy thread with the lateral width of a’, and its motion would look like 1D motion along
the dilated tube. Furthermore, the bead-spring (Rouse) model underlying the tube model gives the
same terminal relaxation behavior irrespective of the choice of the bead size as long as the chain is
composed of many beads, which is regarded as the duality in the simplest form. Such a duality in
description of the chain motion is important in polymer physics and deserves further attention.

1. CONCLUDING REMARKS

This review article adopts an experimental viewpoint as much as possible to summarize results
of analysis of linear viscoelastic and dielectric data (mostly for PI) and discusses some detailed
aspects of the entanglement-loosening mechanism resolved from the analysis. This loosening
mechanism, known as the constraint release (CR) and dynamic tube dilation (DTD) mechanisms in
the tube model, is unequivocally operating in the monodisperse bulk systems of linear and star PI
chains, as revealed from simple comparison of their viscoelastic and dielectric data.

Based on this experimental confirmation of the CR/DTD mechanisms, the survival fraction of
the dilated tube ¢'(¢) is obtained from analysis of the dielectric data, and comparison of ¢’(¢) and the
viscoelastic data indicates validity of the molecular picture of partial-DTD. In this molecular
picture, the tube for a given probe chain dilates up to the maximum level allowed by motion of the
tube-forming chains and by the CR—Rouse motion of the probe itself. If the probe motion occurs in
time over the maximum length scale allowed by the motion of the tube-forming chains, the partial-
DTD picture reduces to the full-DTD picture wherein the relaxed portion of the chains behaves as a
solvent. In this way, the partial-DTD picture makes consistent coarse-graining of the time and
length scales, and the diameter of the partially dilated tube represents a spatial length scale of CR-
equilibration of the entanglement segments in the direction lateral to the probe backbone.

Furthermore, analysis of the dielectric data of linear PI probe in the DTD-free environment (in
long PI matrix) suggests that the dilated tube in monodisperse systems has a dual structure, the
partially dilated tube explained above and a thinner, motional path tube wriggling in the partially
dilated tube. The motional path tube is deduced by considering the consistent coarse-graining of the
time and length scales together with the coherence of the longitudinal motion of the probe chain.
The dielectric relaxation time of monodisperse PI in bulk is well described as the time required for
the longitudinal chain motion along the path tube, and the viscoelastic relaxation time is described
as the time for this motion combined with the lateral equilibration of the entanglement segments
(DTD).

The comparison of the viscoelastic and dielectric data allows us to experimentally resolve the
detailed features explained above. Nevertheless, some theoretical uncertainties remain, for
example, for the molecular origin(s) of the difference in the CR relaxation time of chemically
different chains (PI and PS) and for the value of the tube dilation exponent d. These uncertainties are
important/interesting subjects of future work.
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