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ABSTRACT

For so-called type-A polymer chains having electrical dipoles aligned parallel along their backbone, the large-scale

chain motion over the end-to-end distance results in not only viscoelastic but also dielectric relaxation. These two relaxation

processes detect the same motion but with different averaging moments, which enables us to experimentally resolve some

details of the chain dynamics through comparison of viscoelastic and dielectric data of type-A polymers. For a typical type-A

polymer, high-cis polyisoprene (PI), results of such an experimental approach are summarized to discuss characteristic

features of an entanglement-loosening process (constraint release and/or dynamic tube dilation process) resolved from the

data comparison. [doi:10.5254/rct.19.80388]

CONTENTS

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

II. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A. Relaxation Mechanisms in Tube Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

B. Test of Fixed Tube Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

C. Experimental Observation of Constraint Release Relaxation . . . . . . . . . . . . . . 27

1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2. Data of CR Relaxation Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3. Factors Determining CR Relaxation Time . . . . . . . . . . . . . . . . . . . . . . . . 34

D. Experimental Test of Dynamic Tube Dilation Mechanism . . . . . . . . . . . . . . . 39

1. Test of Molecular Picture of Full-DTD . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2. Test of Molecular Picture of Partial-DTD . . . . . . . . . . . . . . . . . . . . . . . . 44

E. Duality of Tube for Relaxation Time and Relaxation Intensity . . . . . . . . . . . . . 49

1. Viscoelastic and Dielectric Data of Linear PI Probe in DTD-Free Environment . . 50

2. Relaxation Time in DTD-Free Environment . . . . . . . . . . . . . . . . . . . . . . . 53

3. CR–Rouse Analysis of Relaxation Time . . . . . . . . . . . . . . . . . . . . . . . . . 55

F. Comments on Recent Theoretical Model/Analysis . . . . . . . . . . . . . . . . . . . . . 57

1. Tube Dilation Exponent and Feature of Interchain Constraint . . . . . . . . . . . 57

2. Duality in Description of Reptation along Tube . . . . . . . . . . . . . . . . . . . . 59

III. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

IV. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

V. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

I. INTRODUCTION

Needless to say, flexible polymer chains exhibit active thermal motion at temperatures well

above their glass transition temperature (Tg). This thermal motion, occurring in various length

scales spanning from the monomeric bond length to the end-to-end distance of the whole chain

backbone, is the origin of macroscopically observed relaxation processes, for example,

viscoelastic and dielectric processes.1,2 These processes average the same thermal motion of
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the chains but in different ways, which enables us to experimentally resolve some details of the

chain dynamics through comparison of those processes. For example, in short time scales,

comparison of viscoelastic and dielectric data may allow us to resolve the chemical group(s)

involved in the local relaxation. The dielectric relaxation is activated mostly by motion of polar

groups, whereas the viscoelastic relaxation is essentially irrelevant to the polarity, so that

comparison of the dielectric and viscoelastic relaxation intensities provides us with a clue for

specifying the chemical group(s) responsible for the observed relaxation. For example, the beta

relaxation of poly(methyl methacrylate) (PMMA) is detected in both viscoelastic and dielectric

data, but the relaxation intensity is much larger (compared to the alpha relaxation) in the

dielectric data, which suggests that the rotational motion of the COOCH3 group (coupled with

local torsion of the backbone) is the origin of the beta relaxation of PMMA.3

The above example shows that the local relaxation in the length scale of monomeric bonds

sensitively reflects the chemical structure of the polymer chain. In contrast, the global (large-scale)

relaxation over the end-to-end distance of the chain backbone is rather insensitive to the chemical

structure1,4 (except for Tg that determines the friction factor for the global relaxation).

Consequently, the global relaxation is universal for a wide variety of chemically different

polymers and has been considered to be described by only a few parameters.1,4 For example, the

linear viscoelastic terminal relaxation of entangled, monodisperse linear polymers is described by

the entanglement plateau modulus GN and the terminal relaxation time s (~ seN
3.5), with se and N

being the Rouse relaxation time of an entanglement segment and the number of those segments per

chain, respectively.4,5

For molecular description of the entanglement relaxation, this universality allows us to

divide the chain backbone into ‘‘subchains,’’ as schematically illustrated in Figure 1. In general,

we can use subchains of any size in description of the flexible chain dynamics, given that each

subchain contains a sufficiently large number of Kuhn segments (to behave as a flexible unit)

and is internally equilibrated (through motion of those segments) in a focused time scale.1

Because of this freedom in the choice of subchain, the entanglement segment, having a known

molecular weight Me and sustaining the plateau modulus, is conveniently used in literature (and

in this article) as the subchain when our focus is placed on the chain dynamics in a length scale

larger than the entanglement length.1,2 Then, the chain backbone is expressed as a sequence of

N subchains (N ¼ M/Me with M being the chain molecular weight), and the dynamics is

described as the time evolution of the subchain bond vectors u(n,t), with n being the subchain

index (0 , n , N). Specifically, in the linear viscoelastic regime, those subchains behave as

Gaussian chains, and their relaxation modulus G(t), measured after imposition of a small step

FIG. 1. — Schematic illustration of the chain and subchain.
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shear strain c at time 0, is expressed in terms of the shear component of the dyadic of u. In a

continuous treatment, this expression reads1,2

GðtÞ ¼ 1

c
3mkBT

a2

� �Z N

0

huxðn; tÞuyðn; tÞicdn ð1Þ

where a2¼hu2ieq (average at equilibrium), m is the chain number density, kB and T indicate the

Boltzmann constant and absolute temperature, and h...ic stands for the average taken for all

chains under the strain. Equation 1 is equivalent to the stress-optical rule6 at sufficiently long

times where each subchain is internally equilibrated.

A brief comment may need to be made for a molecular meaning of Eq. 1.1,2 At equilibrium, the

subchains in a polymeric material are isotropically oriented (and in the Gaussian state) so that their

entropic tensions are balanced in all directions. Thus, the material exhibits no macroscopic stress

r(t) in an undeformed, equilibrium state at t , 0. The step strain distorts this orientational

distribution of the subchains to disrupt the tension balance, and an unbalanced part of the tension

reflecting the anisotropy of the subchain orientation is observed as the macroscopic r(t). For the

shear strain considered here, the factor hux(n,t)uy(n,t)i (shear component of the dyadic huui)
specifies the isochronal orientational anisotropy of n-th subchain at time t, and r(t) (¼ cG(t)) is

expressed as a sum of this factor for all subchains, as shown in Eq. 1. Correspondingly, the

relaxation of G(t) reflects decay of the orientational anisotropy of the subchains occurring through

their thermal motion.

The same motion of the subchains also activates dielectric relaxation, given that the subchains

have so-called type-A dipoles parallel along the chain backbone.7 Specifically, for type-A linear

chains without dipole inversion, a microscopic polarization of the chain is proportional to its end-to-

end vector R(t)¼
R N

0
u(n,t)dn (cf. Figure 1). Thus, the dielectric relaxation function F(t), measured

after imposing a weak electric field E for�‘ , t , 0 in y direction and removing the field at t¼0, is

expressed in terms of the y component of the subchain bond vector u(n,t) as8

FðtÞ ¼ m
E

Z N

0

mdhuyðn; tÞiEdn ð2Þ

In Eq. 2, md is the magnitude of dipole per unit length of the chain backbone, and a factor mduy(n,t)
denotes the polarization of the n-th subchain at time t. h...iE stands for the average taken for all chains

during the relaxation process after removal of the electric field, and the integral in Eq. 2 gives the

average polarization of the type-A chain.

Comparing Eqs. 1 and 2, we note that the viscoelastic and dielectric relaxation processes of

type-A chains detect the same motion of the chain (the dynamics of u) but with different averaging

moments, the second- and first-moment averages of u at time t. This difference enables us to

experimentally resolve some details of the global dynamics of the type-A chain through comparison

of the viscoelastic and dielectric data. For convenience of this comparison, this article uses an

expression of the normalized dielectric relaxation function U(t) deduced from the fluctuation–

dissipation theorem,1,2,8

UðtÞ” FðtÞ
Fð0Þ ¼

1

Na2

Z N

0

Z N

0

huðn; tÞ � uðn0; 0Þieqdndn0 ð3Þ

where F(0) is the initial value of F(t), and h...ieq stands for the average taken at equilibrium where all

chains have an isotropic Gaussian conformation dynamically fluctuating with time. (This U(t)
represents the first-moment average of u(n,t) at time t, as is the case also for F(t).) Equations 2 and 3

are rigorously equivalent to each other, but the Gaussian feature underlying Eq. 3 is more

convenient, compared to the oriented conformation (created by the electric field) considered in Eq.
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2, for analyzing the chain dynamics. Thus, in this article, the comparison of viscoelastic and

dielectric data of entangled type-A polymer is mainly made for U(t) described by Eq. 3 and the

normalized viscoelastic relaxation function, l(t) ” G(t)/GN with G(t) given by Eq. 1. (The

fluctuation–dissipation theorem gives an expression of l(t) in terms of u at equilibrium9 [that

corresponds to Eq. 3], but this expression is not used in this article.)

We find a considerable variety of type-A chains that include poly(propylene oxide),

poly(phenylene oxide), poly(e-caprolactone), and high-cis polyisoprene.10 Nevertheless, for the

first three polymers, we note some difficulties in the dielectric measurements in a melt state: in

general, the measurements at high temperatures (T) are disturbed by a direct current conduction due

to ionic impurities so that the type-A polymer to examine is desired to behave as an amorphous melt

at low T. Namely, the polymer is desired to have a low Tg (and a low melting temperature if it is

semi-crystalline). The first three in the above list are not very convenient from this experimental

viewpoint. In contrast, synthetic polyisoprene (PI), obtained from living anionic polymerization in

non-polar solvents, is rich in the cis microstructure (cis-1,4:trans-1,4:vinyl-3,4 @ 80:15:5)11 to

have the type-A dipole of detectable magnitude, and stays as an amorphous melt even at low T
because it does not crystallize and has low Tg (@�70 8C). Furthermore, for the synthetic PI, samples

of various topological architectures (such as a star-branched architecture) with a narrow molecular

weight distribution can be prepared rather easily through coupling of living PI anions. In addition,

PI chains have only weak (though detectable) type-A dipoles, so that their dynamics is negligibly

affected by the dipole–dipole interaction and coincides with that in a typical, non-polar amorphous

melt. (PI also has the type-B dipole perpendicular to the chain backbone,10 but this dipole is also

weak, thus not disturbing the amorphous melt dynamics.)

Because of these advantageous features of PI, the slow dielectric relaxation reflecting the

global chain dynamics has been extensively examined mostly for PI,1,10–40 and comparison of the

viscoelastic and dielectric data has revealed some details of the dynamics. This review article adopts

an experimental viewpoint as much as possible to focus on the details of the entanglement-

loosening mechanism resolved from the data comparison30–40 mainly for entangled linear and star

PI. (This experimental approach is unique to the authors’ group, and no similar approach is found in

literature.) In relation to this mechanism, comparison between chemically different polymers (PI

and polystyrene), not fully discussed in literature, is also presented.

Throughout this article, the sample code number indicates the molecular weight. For example,

PI 626k and PI 1.1M stand for linear PI samples with M¼6263103 and 1.13106, respectively, and

PI (80k)6 is a six-arm branched star PI sample with the arm molecular weight of Marm¼803103.

II. RESULTS AND DISCUSSION

A. RELAXATION MECHANISMS IN TUBE MODEL

For a given chain (probe) in an entangled system, surrounding chains behave as uncrossable

objects. In the tube model widely used as a basic framework for describing the dynamics of such a

probe, a topological constraint for the probe motion due to those objects is expressed as an

impermeable tube surrounding the probe, and the probe is considered to move in the tube having a

diameter identical to the entanglement length a. (The a corresponds to the entanglement plateau

modulus; GN� c/a2, with c being the mass concentration of the chains.) In this molecular picture,

the relaxation is equivalent to thermal escape of the probe from the tube at time 0: namely, the

orientational anisotropy and memory shown in Eqs. 1 and 3 vanish on this escape.

In the classical tube model not considering motion of the tube-forming chains, this escape

occurs through reptation (one-dimensional curvilinear diffusion along the tube) for the linear probe

and through arm retraction (contraction along the tube) for a star probe;1,2,4 see Figure 2. The
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contour length of the linear probe measured along the tube fluctuates with time, and this mechanism

(not illustrated in Figure 2) reduces the effective diffusion length of the probe to accelerate the

relaxation.1,2,4,41 A refined tube model considers motion of the tube-forming chains to introduce the

constraint release (CR) mechanism that allows local hopping of the probe beyond the tube

wall;1,2,42 see Figure 2. This CR mechanism introduces a multi-chain nature of the entanglement

relaxation into the tube model. Accumulation of such local CR processes effectively widens the

tube diameter.1,2,43 This mechanism is referred to as dynamic tube dilation (DTD).

B. TEST OF FIXED TUBE MODEL

For the reptation, contour length fluctuation (CLF), and arm retraction mechanisms occurring

in the absence of CR/DTD, we can formulate the time evolution of the bond vector u of the

entanglement segment (subchain) appearing in Eqs. 1 and 3 to calculate the normalized viscoelastic

and dielectric relaxation functions, l(t) (¼G(t)/GN) and U(t). Comparing the calculated l(t) and

U(t) with data, we can test validity of the fixed tube models for real entangled polymers. However,

this type of test requires us to consider all possible modes of chain motion simultaneously occurring

in the fixed tube; for example, reptation and CLF may not additively contribute to l(t), (i.e., not in a

way considered in some models).1,2 In addition, we may have some freedom to adjust model

parameters in the test. Thus, direct comparison between the model calculation and data is not so

easily conducted.

In contrast, comparison of viscoelastic and dielectric data allows us to unequivocally test the

fixed tube model. In this model, a subchain at time t staying in the surviving portion of the initial

FIG. 2. — Schematic illustration of representative relaxation mechanisms considered in the tube model.
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tube preserves the orientational anisotropy and memory of the other subchain that was located at the

same position in the initial state (time 0), as can be easily noted in Figure 2. Then, the normalized

relaxation functions are identical to the survival fraction of the initial tube u(t) irrespective of the

details of the conformational changes between the times 0 and t,

lðtÞ ¼ UðtÞ ¼ uðtÞ for fixed tube model ð4Þ

Equation 4 gives a simple relationship between the normalized storage modulus G0(x)/GN and the

normalized decrease of the dynamic dielectric permittivity {e0�e0(x)}/De (with e0¼e0(0) and De¼
dielectric intensity), and between the normalized loss modulus G 00(x)/GN and the normalized

dielectric loss e 00(x)/De, all being measured as functions of the angular frequency x, as:1,24,37,40

G0ðxÞ=GN ¼ e0 � e0ðxÞf g=De ð5aÞ

G 00ðxÞ=GN ¼ e 00ðxÞ=De ð5bÞ

In Figure 3, these relationships are examined for the viscoelastic and dielectric data of linear PI 308k

(M¼308 3 103)34 and six-arm star PI (59k)6 (Marm¼59 3 103),33 both having narrow molecular

weight distribution (MWD), Mw/Mn , 1.1. For simplicity, such narrow MWD samples are

hereafter referred to as monodisperse samples.

As noted in Figure 3, the monodisperse linear and star PI samples do not obey Eq. 5; the

dielectric relaxation (red symbols) is significantly narrower and slower than the viscoelastic

relaxation (blue symbols). Consequently, the entanglement represented as the tube is not fixed in

space, and the CR/DTD mechanism explained for Figure 2 plays an essential role in the slow

dynamics of those samples. This experimental finding serves as a starting point for a further test of

the dynamics of the entangled linear and star polymers. (It should be added that the fixed

entanglement environment, wherein Eq. 5 is valid, is realized for dilute probes in high-M matrices,

as shown later in Figure 23.)

C. EXPERIMENTAL OBSERVATION OF CONSTRAINT RELEASE RELAXATION

1. Overview. — The constraint release (CR) relaxation can be most clearly observed for

dilute high-M probe chains entangled only with much shorter matrix chains. As an example,

Figure 4 shows G 0 and G 00 data (symbols) of blends of linear dilute PI 626k probe (M2¼ 626

3 103; volume fraction t2 ¼ 0.005) in entangling linear PI matrices with various molecular

weights M1 as indicated.44 For comparison, the imaginary part of the complex viscosity, g 00 ¼
G 0/x, with x being the angular frequency, is also shown (top panel). The time–temperature

superposition excellently worked for those data44 (and for all other data presented in this

review). For the blends, the indices ‘‘1’’ and ‘‘2’’ are hereafter used to represent the short and

long chain components, respectively.

As noted in Figure 4, the data of the blends (symbols) with such small t2 are almost

indistinguishable from the matrix data (dashed curves) at high x where the matrix has not relaxed.

In contrast, at low x where the matrix has fully relaxed, the relaxation of the dilute PI 626k probe is

clearly observed, in particular for G0 and g 00 being much more sensitive to weak but slow relaxation

compared to G 00. (Thus, G0 clearly exhibits a double-step decrease at high and low x, and g 00 shows

two peaks at those x.) We also note that the mode distribution of the probe relaxation is insensitive

to M1 of the matrix given that M1 is much smaller than M2 of the probe. In this extreme situation, the

probe relaxation is activated by the motion of much shorter matrix chains, namely, pure CR

relaxation of the probe is detected experimentally. The corresponding CR behavior of dilute probes

has been observed also for the dielectric relaxation of PI probes26,34 and for the viscoelastic

relaxation45–48 and diffusion49,50 of polystyrene (PS) probes. Viscoelastic data of binary blends
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have been reported extensively also for the other polymer species, for example, polybutadiene

(PB).1 However, to the best of our knowledge, no systematic data are available for long and dilute

PB probes entangled only with much shorter matrix PB chains (i.e., for the dilute PB probes in the

CR regime).

For t2 (¼1�t1)� 1, the behavior of the matrix chains in the blend is negligibly affected by the

dilute probe, as noted in Figure 4. Then, the matrix contribution to the complex modulus Gb * (x) of

the blend is safely evaluated as t1G1,m * (x), with G1,m * (x) being the complex modulus data of

pure matrix. Correspondingly, the complex modulus of the dilute probe in the blend is obtained

from the Gb * (x) and G1,m * (x) data as34,44–46,51

G2;b*ðxÞ ¼ Gb*ðxÞ � t1G1;m*ðxÞ ð6Þ

Figure 5 compares the storage modulus G2,b
0(x) thus evaluated for dilute linear PI probes44 in the

CR regime (namely, for the PI probes entangled only with much shorter PI matrix chains). Also

shown for comparison is the G2,b
0(x) data of PS probes in the CR regime reported in the

literature.45,46 For clarity of the figure, the data are shown only for representative probes. Those PI

FIG. 3. — Normalized viscoelastic and dielectric data of monodisperse linear PI 308k (top panel) and six-arm star PI (59k)6

(bottom panel) at 40 8C. The parameters used in normalization are e0¼2.41, De¼0.10, and GN¼0.48 MPa. Data are taken

from Watanabe et al.33,34 with permission.
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and PS probes have various M2 and t2, and their G2,b
0(x) data were obtained at different

temperatures (40 and 167 8C for the PI and PS probes, respectively). Thus, in the comparison in

Figure 5, the G2,b
0(x) data are normalized by the Rouse factor, {M2/qt2RT} with q, R, and T being

the mass density of the blend, gas constant, and absolute temperature, respectively, and plotted

against the reduced frequency xhs½G�2;bi. Here, hs½G�2;bi is the second-moment average viscoelastic

relaxation time of the probe evaluated from the G2,b
0(x) and G2,b

00(x) data as34,44–46

FIG. 4. — Linear viscoelastic data of PI 626k/PI blends at 40 8C (symbols). The volume fraction of the dilute high-M probe

(PI 626k) is t2¼0.005 in all blends. Dashed curves indicate the data of pure matrix PI. Data are taken from Sawada et al.44

with permission.
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hs G½ �
2;bi ¼

G0
2;bðxÞ

xG00
2;bðxÞ

" #
x�0

¼
Z ‘

0

tG2;bðtÞdt

� �
=

Z ‘

0

G2;bðtÞdt

� �
ð7Þ

hs½G�2;bi is identical to a ratio of weighed integrals of the relaxation modulus G2,b(t) of the probe1 (as

shown in the second line of Eq. 7). Note that the subtraction in Eq. 6 is just a minor correction for the

Gb
0(x) data of the blend at low x examined in Figure 5 (because Gb

0(x)�G1,m
0(x) at those x; see

middle panel of Figure 4) and that the normalized modulus {M2/qt2RT}G2,b
0(x) and the relaxation

time hs½G�2;bi were experimentally confirmed to be independent of t2 (see, for example, Watanabe et

al.38 and its Supporting Information, Sawada et al.44 and Watanabe and Kotaka45): namely, the

probe was confirmed to be dilute and entangled only with the matrix chains.

In Figure 5, the G2,b
0(x) data of various PI and PS probes having M2� M1 collapse onto a

master curve, indicating that these chemically different probes exhibit universal CR relaxation

mode distribution; see also figure 12 of Watanabe et al.26 and figure 4 of Sawada et al.44

Furthermore, at low x, those data are well described by the CR–Rouse model42 shown with the solid

black curve (Fourier transformation of GCR(t) given below),

for linear probe: GCRðtÞ ¼
qt2RT

M2

XN2

p¼1

exp � p2t

s G½ �
CR

 !
with N2 ¼ M2=Me ð8Þ

Here, s½G�CR is the longest viscoelastic CR relaxation time, and the second-moment average relaxation

time (used in the horizontal axis for the black curve in Figure 5) is given by hs½G�CRi¼(p2/15)s½G�CR in the

FIG. 5. — Storage modulus G2,b
0 of dilute linear probe entangled only with much shorter linear matrix chains. The G2,b

0 data

for PI and PS probes (at 40 and 167 8C, respectively) are normalized by the Rouse factor {M2/qt2RT} and plotted against the

reduced frequency, xhs½G�2;bi. Data are taken from Watanabe et al.44–46 with permission.
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continuous treatment1 for N� 1. (The numerical pre-factor of p2/15 is obtained from the second

line of Eq. 7, with G2,b(t) therein being replaced by GCR(t) given by Eq. 8.)

The universality of the mode distribution seen in Figure 5 vanishes when M2 and M1 are not

sufficiently separated and the CR mechanism does not dominate the probe relaxation; see figure 3 of

Sawada et al.,44 figure 4 of Qiao et al.,51 and figure S5 in Supporting Information of Matsumiya et

al.37 Thus, this universality is an important criterion for judging if the probe relaxation is dominated

by the CR mechanism.

This criterion can be cast as a critical value of the Struglinski–Graessley parameter SG ¼
M2M2

e=M3
1. This SG is defined as a ratio of the reptation time of the probe, srep,2 � M3

2/Me, to the

Rouse-type CR relaxation time of the probe, sCR,2 � srep,1 (M2/Me)
2�M3

1M2
2=M3

e , and numerical

pre-factors in srep,2 and sCR,2 are omitted in SG. (The matrix reptation time srep,1 involved in sCR,2

differs from the actual relaxation time of the matrix, as discussed later in relation to Figures 9 and

10.) The universal mode distribution (namely, the CR dominance in the probe relaxation) is

experimentally found only in ranges of SG � 0.2 and SG � 0.5 for PI44 and PS1,46–48 probes,

respectively. The critical SG value for the CR dominance is smaller for PI than for PS, suggesting

that the CR effect on the relaxation emerges more prominently for PI than for PS when CR is

competing with other relaxation mechanisms such as reptation. This difference between PI and PS

is further discussed later for Figures 9, 11, and 12.

The CR relaxation has been observed also for dilute star PI probes entangled with much shorter

matrix star PI chains.36 Figure 6 shows data of the normalized storage modulus of those star probes,

{Marm,2/qt2RT}G2,b
0(x) with Marm,2 being the arm molecular weight of the probe, plotted against

the reduce frequency xhs½G�2;bi. The black solid curve indicates the reduced storage modulus obtained

from the CR–Rouse relaxation modulus of tethered chains,

FIG. 6. — Storage modulus G2,b
0 of dilute star PI probe entangled only with shorter star PI matrix chains. The G2,b

0 data of

the probe at 40 8C are normalized by the Rouse factor {Marm,2/qt2RT} and plotted against the reduced frequency, xhs½G�2;bi.
Data are taken from Watanabe et al.36 with permission.
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for star probe: GCRðtÞ ¼
qt2RT

Marm;2

XNarm;2

p¼1

exp �ð2p� 1Þ2t

s G½ �
CR

 !
with Narm;2 ¼ Marm;2=Me ð9Þ

(The average relaxation time associated with Eq. 9 is given by hs½G�CRi¼ (p2/12)s½G�CR for Narm,2� 1,

where the pre-factor of p2/12 is obtained from the second line of Eq. 7 with G2,b(t) therein being

replaced by GCR(t) given by Eq. 9.) The reduced modulus data of the star probes exhibit almost

universal dependence on xhs½G�2;bi at low x , 2/hs½G�2;bi irrespective of M1,arm and M2,arm of the matrix

and probe arms, and are close to the CR–Rouse modulus, although deviation from this universal

dependence is noted at high x because of fast relaxation of the probe attributable to shallow CLF.36

It needs to be added that the deviation from the universal xhs½G�2;bi dependence is not clearly observed

for the linear probes (cf. Figure 5), because those linear probes have much higher M2 compared to

the star probe arms tested in Figure 6, and thus the non-universality due to CLF is not clearly

resolved at the frequencies examined in Figure 5.

2. Data of CR Relaxation Time. — For the dilute probes exhibiting the universal behavior of

G2,b
0(x) at low x (cf. Figures 5 and 6), the hs½G�2;bi data can be used as the second-moment average

viscoelastic CR relaxation time hs½G�2;CRi. The hs½G�2;CRi data available in the literature are

summarized in Figure 7 for various linear probes in various linear matrices34,44–46 and in Figure

8 for two star PI probes in various star PI matrices.36 The plots shown with the same color

indicate the hs½G�2;CRi data obtained for a given probe in different matrices (and the matrices are

mostly common for different probes), as shown in the legend. Those hs½G�2;CRi data, cast in

FIG. 7. — Second-moment average viscoelastic CR relaxation time of dilute linear PS and PI probes in much shorter linear

PS and PI matrices at 167 and 40 8C, respectively. The plots shown with the same color indicate the relaxation time data

obtained for a given probe in different matrices (the matrices are mostly common for different probes), as shown in the

legend. Those data are double-logarithmically plotted against M3
1M2

2 . Data are taken from Watanabe et al.34,44–46 with

permission.
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empirical equations shown later, allow us to estimate the CR relaxation time of monodisperse
linear and star chains in bulk, thereby offering an experimental basis for discussion of the CR

contribution to the relaxation of those chains.

In Figure 7, the hs½G�2;CRi data of various linear probes in various linear matrices collapse on a

universal line when plotted double-logarithmically against M1
3M2

2, as noted in the top and bottom

panels for PS and PI, respectively. The proportionality to M2
2 is in accord with the Rouse-like feature

of the actual CR process observed for the PI and PS probes (cf. Figure 5). Similarly, for two star PI

probes in various star PI matrices, the normalized N�2
arm;2hs

½G�
2;CRi data with N�2

arm;2 being the CR–

Rouse factor for the probe arm relaxation time collapse on a line when plotted semi-logarithmically

against Narm,1, where Narm,1 and Narm,2 indicate the entanglement number per arm of the probe and

matrix star chains, respectively: Narm,j¼Marm,j/Me with Me¼5.03103 for PI. (The normalization by

the CR–Rouse factor was necessary for collapse of the plots for the two star probes.) These results

can be cast in the following empirical equations (shown in Figures 7 and 8 with black lines):

for the linear PS probe in linear PS melt at 167 8C46

hs G½ �
2;CRi ¼

p2

15
s G½ �

2;CR ¼ 2:0 3 10�25M3
1M2

2ðin sÞ ð10Þ

for the linear PI probe in linear PI melt at 40 8C44,51

hs G½ �
2;CRi ¼

p2

15
s G½ �

2;CR ¼ 1:0 3 10�25M3
1M2

2ðin sÞ ð11Þ

for the star PI probe in star PI melt at 40 8C36

hs G½ �
2;CRi ¼

p2

12
s G½ �

2;CR ¼ 4:0 3 10�5N2
arm;2exp 0:71Narm;1

n o
ðin sÞ ð12Þ

These empirical equations are used in a test of the CR contribution to the terminal relaxation in

monodisperse bulk shown below and in an analysis of the DTD process explained later. (The

hs½G�2;CRi data of linear probes are well described by those equations, but an equally good description

is given by an empirical equation with slightly weaker M1 dependence.44 Nevertheless, the results

of the test and analysis hardly changed even if the latter equation was used. Thus, for definiteness,

we adopt Eqs. 10–12 as the empirical equations that serve as the basis of our test/analysis.)

FIG. 8. — Second-moment average viscoelastic CR relaxation time of dilute star PI probes in shorter star PI matrices at 40

8C. The relaxation time data normalized by the CR–Rouse factor for the probe star arm relaxation time N�2
arm;2, with Narm,2

being the number of entanglements per probe arm, are semi-logarithmically plotted against the number of entanglements per

matrix star arm, Narm,1. The plots shown with the same color indicate the relaxation time data obtained for a given probe in

different matrices (the matrices are mostly common for the two probes), as shown in the legend. Data are taken from

Watanabe et al.36 with permission.
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Setting M1¼M2¼M in Eqs. 10 and 11, we can experimentally evaluate the average viscoelastic

CR relaxation time hs½G�m;CRi of monodisperse linear PS and PI samples of the molecular weights M.

Similarly, from Eq. 12 with Narm,1 ¼ Narm,2 ¼ Narm, we obtain hs½G�m;CRi of monodisperse star PI

samples. For those PS and PI samples, the second-moment average relaxation time (terminal

relaxation time) hs½G�m i has been obtained as a product of the zero-shear viscosity and recoverable

compliance, and thus the hs½G�m;CRi=hs
½G�
m i ratio can be evaluated in a purely empirical way. Figure 9

compares this ratio for the linear PS and PI as well as for the star PI. The segmental friction involved

in hs½G�m;CRi and hs½G�m i is canceled in the ratio, so that the comparison in Figure 9 allows us to

unequivocally examine differences of the CR contribution to the terminal relaxation of respective

polymers.

Comparing the monodisperse linear and star PI having the same entanglement number per
chain span, in other words having N¼2Narm (blue and green symbols in Figure 9), we note that the

hs½G�m;CRi=hs
½G�
m i ratio is considerably smaller and thus the CR contribution to the terminal relaxation

is significantly larger for the star PI. This fact is also deduced in our later analysis of the DTD

process. (The hs½G�m;CRi=hs
½G�
m i ratio smaller for the star chain is also expected from the tube model

assuming the full dilation of the tube for both linear and star chains, but this model itself fails for the

monodisperse star chain, as shown later in that analysis.)

We also note that the hs½G�m;CRi=hs
½G�
m i ratio is considerably smaller and the CR contribution is

considerably larger for linear PI than for linear PS having the same entanglement number N; cf. blue

and red symbols. In our ordinary understanding, the terminal viscoelastic relaxation of entangled

monodisperse linear polymers is uniquely determined by the plateau modulus GN and the terminal

relaxation time hs½G�m i. However, the considerable difference of the hs½G�m;CRi=hs
½G�
m i ratio noted for

linear PI and PS (Figure 9) suggests that this understanding needs to be refined for the CR relaxation

of those polymers. This difference is further tested below in relation to the M1 dependence of the CR

time of probes in blends. Readers who like to skip this test can directly proceed to the ‘‘D.

Experimental Test of Dynamic Tube Dilation Mechanism’’ section where the DTD mechanism is

examined experimentally.

3. Factors Determining CR Relaxation Time. — In the simplest molecular view, the

viscoelastic CR relaxation time of a dilute probe, hs½G�2;CRi, is expected to be proportional to the

terminal relaxation time of the pure matrix, hs½G�1;mi. However, this is not the case in experiments. For

FIG. 9. — Ratio of the second-moment average viscoelastic CR relaxation time hs½G�m;CRi to the measured second-moment

average relaxation time hs½G�m i obtained for monodisperse linear PS and PI and monodisperse star PI melts at temperatures as

indicated. hs½G�m;CRi was evaluated from the empirical equations (Eqs. 10–12) for the CR time data of dilute probes in much

shorter matrices. The hs½G�m;CRi/hs
½G�
m i ratio for monodisperse linear chains is plotted against the number N of entanglements per

chain, and the ratio for monodisperse star chains is plotted against the number 2Narm of entanglements per the longest span

(two arms) of the star chain. Data are taken from Watanabe et al.29,34–36,44–46,51,52 with permission.
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the star PI matrices examined in Figure 6 (Marm,1¼9.5k–41k), the relaxation time is well described

by an empirical equation, hs½G�1;mi¼2.3310�5N2
arm;1exp{0.75Narm,1} (in s) at 40 8C, with Narm,1 being

the entanglement number per matrix star arm.51 This Narm,1 dependence of hs½G�1;mi is stronger than

that of hs½G�2;CRi (Eq. 12). Similarly, hs½G�1;mi of the linear PS and PI matrices is proportional to M3:5
1 , and

this M1 dependence is stronger than that of hs½G�2;CRi (cf. Eqs. 10 and 11). These differences between

hs½G�2;CRi and hs½G�1;mi are important in our discussion of the CR mechanism and are further examined

below for the raw G0 and g 00 data in order to avoid any small uncertainty in the subtraction and zero-

x extrapolation made for hs½G�2;bi in Eqs. 6 and 7.

For the PI/PI blends that contain the same, dilute PI 626k probe (exhibiting the CR relaxation)

but different linear PI matrices, Figure 10 plots the G0 and g 00hs½G�1;mi
�1

data44 against the reduced

angular frequency xhs½G�1;mi, with the matrix relaxation time hs½G�1;mi being evaluated as the product of

the zero-shear viscosity and recoverable compliance of the matrix. (The g 00 data are normalized by

the matrix relaxation time hs½G�1;mi.) The dashed curves show the data of the matrices plotted in the

same format.

At high x where the matrix (occupying 99.5% of the blends) dominantly contributes to the

blend relaxation, the data of the three blends (symbols) and the three matrices (dashed curves) agree

with each other when plotted against xhs½G�1;mi, as clearly noted in Figure 10. This agreement is

consistent with our understanding that the terminal viscoelastic relaxation of monodisperse linear

polymer is determined by GN (common for the three matrices) and hs½G�1;mi: for the blends and

matrices, the difference of N1 has been compensated by plotting the data against xhs½G�1;mi (~xN3:5
1 ),

FIG. 10. — Comparison of G0 and g 00hs½G�1;mi
�1

data of PI 626k/PI blends at 40 8C. The dilute PI 626k probe therein exhibits

the CR relaxation. Data are taken from Sawada et al.44 with permission.
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which results in the agreement of the high-x data. In contrast, no agreement is noted for the low-x
data of the blends detecting the CR relaxation of the dilute PI 626k probe. Specifically, in the

reduced frequency scale of xhs½G�1;mi, the probe relaxation is systematically accelerated with

increasing M1, as clearly noted for both G0 and g 00hs½G�1;mi
�1

data. This result indicates, without any

further analysis, that hs½G�2;CRi of the probe is more weakly dependent on M1 compared to hs½G�1;mi of the

matrix. The factor of M3
1 appearing in Eqs. 10 and 11 gives just a quantitative description of this

experimental fact.

This M3
1 dependence of hs½G�2;CRi could be due to multiplicity of chains sustaining one

entanglement (argued by Klein53) combined with the CLF contribution to the CR process,1 or a very

broad crossover in the local CR relaxation on an increase of M1 (.Me) as argued by Read and

coworkers54 (although the corresponding crossover of hs½G�1;mi has not been experimentally resolved

for monodisperse matrices). The molecular origin(s) of the M3
1 dependence of hs½G�2;CRi deserves

further studies.

In relation to the above test of the M1 dependence of hs½G�2;CRi, it is also informative to examine

the difference of hs½G�2;CRi for chemically different PS and PI probes by focusing on the raw G0 and g 00

data so as to again avoid any small uncertainty in the subtraction and zero-x extrapolation (Eqs. 6

and 7). For this purpose, Figure 11 shows the normalized G0/GN and g 00G�1
N hs

½G�
1;mi

�1
data for PI and

PS blends44,46 that contain dilute probes in linear matrices of very similar entanglement numbers,

N1¼6.9 and 6.8 for PS 124k and PI 34k in the top panel and N1¼4.0 and 4.2 for PS 72k and PI 21k in

the bottom panel: the normalization by GN is necessary for direct comparison of the data of

chemically different blends. For PS and PI at 167 and 40 8C, respectively, GN/MPa¼0.21 and 0.48

and Me¼1.8 3 104 and 5.0 3 103, the latter being used for evaluation of N1.

At high x where the matrix chains dominantly contribute to the relaxation, the data of the

blends (symbols) and matrices (dashed curve) collapse on a universal curve when plotted against

the reduced frequency xhs½G�1;mi, as noted in Figure 11. This collapse is again in harmony with our

understanding that the terminal viscoelastic relaxation of monodisperse linear polymers (matrix in

this case) is determined by GN and hs½G�1;mi. However, at low x where the CR relaxation of the dilute

probe dominates the blend relaxation, the PS and PI blends exhibit a clear difference in their data.

In Figure 11, the differences in the volume fraction t2 and the entanglement number N2 of the

probes, t2¼ 0.01 and N2¼ 156 for PS 2.8M and t2¼ 0.005 and N2¼ 125 for PI 626k, partly

contribute to the difference of the low-x CR relaxation of these probes. However, this difference

due to the differences in N2 and t2 can be removed when the G0 and g 00fhs½G�1;miN2
2g
�1

data are

normalized by the Rouse factor for the probe modulus, FR¼ {M2/qt2RT}, and plotted against a

reduced frequency xhs½G�1;miN2
2, where N2

2 is the Rouse factor for the CR time of the probe. However,

the difference of the low-x CR relaxation of the PI and PS probes clearly remains even after this

normalization, as shown in Figure 12. This remaining difference does not vanish even if the

normalized FRG0 and FRg 00fhs½G�1;miN2
2g
�1

data are plotted against another type of reduced

frequency, xNa
1 N2

2 with a¼3 or 3.5 (because the PS and PI matrices have almost identical N1).

The difference between the PS and PI probes seen in Figure 12 clearly indicates that these

probes have different CR relaxation times hs½G�2;CRi even when N1 and N2 are common for them. In

other words, hs½G�2;CRi is not uniquely determined by N2 and the matrix relaxation time hs½G�1;mi but is

affected by an extra factor that changes with the chemical structure of the chain. This extra factor,

not clearly recognized for monodisperse polymers, may correspond to the number z of local

constraints per entanglement considered in the CR–Rouse model of Graessley:42 z reflects the

number of matrix chains forming an entanglement for the probe chain. If the entanglement is

exclusively due to the binary (pair-wise) constraint between the chains irrespective of their

chemical structure, the above difference between the PS and PI probes may not be straightforwardly

deduced within the CR–Rouse model. A correlation between the extra factor and the chemical

structure of the chain is closely related to the nature of entanglement (binary or multiple-chain
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FIG. 11. — Plots of normalized G0/GN and g 00G�1
N hs

½G�
1;mi

�1
data of PI 626k/PI and PS 2.8M/PS blends (at 40 and 167 8C,

respectively) against the reduced frequency xhs½G�1;mi. The dilute PI 626k and PS 2.8M linear probes (t2¼0.005 and 0.01) exhibit

CR relaxation. Black curves for G0/GN indicate a sum of G0
2,CR/GN for the CR–Rouse relaxation of the probe (with G0

2,CR being

given as Fourier transformation of Eq. 8) and the terminal tail of the t1G
0
1,m/GN data of the matrix. The corresponding sum for

g 00G�1
N hs

½G�
1;mi

�1
is also shown with the black curves. Data are taken from Watanabe et al.44,46 with permission.
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constraint) and is further discussed later in the ‘‘F. Comments on Recent Theoretical Model/

Analysis’’ section in relation to the tube dilation exponent.

Here, it should be emphasized that the extra factor discussed above is absorbed in the numerical

front factors in Eqs. 10 and 11, and thus the CR behavior of chemically different PS and PI probes is

still described commonly by the CR–Rouse model (with its s½G�CR being specified by Eqs. 10 and 11).

In fact, the CR relaxation of the PS 2.8M and PI 626k probes examined in Figures 11 and 12 exhibits

the same, Rouse-type mode distribution, as noted from the agreement of the data and black solid

curves, where the curves for G0 represent a sum of GCR
0 of the probe (obtained from GCR(t) shown in

Eq. 8) and the terminal tail of the t1G1,m
0 data (� x2) of the matrix, and the curves for g 00, the

corresponding sum reduced by x. Note that the difference between the PS 2.8M and PI 626k probes

FIG. 12. — Plots of normalized FRG0 and FRg 00fhs½G�1;miN2
2g
�1

data of PI 626k/PI and PS 2.8M/PS blends examined in Figure

11 against a reduced frequency xhs½G�1;miN2
2 . Black curves are the same as those in Figure 11. Data are taken from Watanabe et

al.44,46 with permission.
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in Figures 11 and 12 vanishes when their G2,b
0 data are normalized by the Rouse factor and plotted

against the frequency normalized by their CR time data hs½G�2;bi; see collapse of the plots for those

probes around the Rouse–CR curve in Figure 5 (the filled gray square and circle for the PS 2.8M

probe in PS 72k and PS 124k matrices, and the unfilled red square and circle for the PI 626k probe in

PI 21k and PI 34k matrices). This collapse again indicates the validity of the CR–Rouse model.

Thus, in the following sections, we use this model to examine some details of the dynamic tube

dilation (DTD) mechanism.

D. EXPERIMENTAL TEST OF DYNAMIC TUBE DILATION MECHANISM

The CR–Rouse process has been experimentally confirmed for dilute probes entangled with

much shorter matrix chains (cf. Figures 4–6). Thus, the relaxation mechanisms assumed in the fixed

entanglement environment, the reptation and arm retraction mechanisms for the linear and star

chains (Figure 2), should be modified by the CR mechanism in actual entangled systems. This

modification can be made in the time evolution equation of the spatial position of the entanglement

segment (subchain explained for Figure 1), as done in the Graham–Likhtman–McLeish–Milner

model55 (for non-linear rheology), for example. However, a combination of the dielectric and

viscoelastic data of type-A polymer, PI, enables us to make this modification in a simple and

experimental way. This section focuses on this modification. The results presented below are

believed to be general and applicable to PS and other amorphous polymers having no type-A

dipoles.

As a starting point of the modification, we consider accumulation of the local CR processes that

allows successive entanglement segments, say b(t) segments, to be mutually equilibrated through

exchange of their positions, thereby behaving as a dilated segment as a whole. This dilated segment

serves as a stress-sustaining unit in the time scale of the mutual equilibration. In the tube model, this

mutual equilibration is described as the dynamic tube dilation (DTD) illustrated in Figure 2, and the

diameter a0(t) of the dilated tube is related to b(t) and the entanglement length a as

a0ðtÞ ¼ bðtÞf g1=2a ð13Þ

In a short time scale of intrinsic Rouse relaxation within the entanglement segment, b(t)¼1 and a0(t)
¼ a. In a longer time scale, a0(t) and b(t) increase with t in a manner explained later.

In a given time scale, a chain is equilibrated only up to the length scale of a0(t) and thus

topologically constrained in the dilated tube having the diameter a0(t). In that time scale, the chain is

allowed to move only in this dilated tube. Namely, the reptation and arm retraction mechanisms for

the linear and star chains still work, but these mechanisms need to be redefined with respect to the

dilated tube. Figure 13 illustrates this situation for a linear chain. At a time t, portions of the linear

chain near its ends have random orientation to lose its memory of the initial orientation. The

FIG. 13. — Schematic illustration of a dilated tube and a linear chain trapped in it.
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remaining portion, having a fraction u0(t), is trapped in the dilated tube and preserves its initial

orientation (at time 0) defined for every b(t) entanglement segments, thereby contributing to the

stress. The situation is the same also for a star chain. Thus, for both linear and star chains, the

normalized viscoelastic relaxation function is expressed in terms of b(t) and the survival fraction of

the dilated tube, u0(t), as24,35,36,43,51

lðtÞ ¼ u0ðtÞ=bðtÞ ðfor both linear and star chainsÞ ð14Þ

Equation 14 is equivalent to Eq. 4 in the fixed tube model, except that the dilated segments serve as

the stress-sustaining unit and thus the modulus in Eq. 14 exhibits an extra decay by the factor of 1/

b(t).

The normalized dielectric relaxation function U(t) also can be expressed in terms of b(t) and

u0(t) with the aid of Figure 13. The dielectric memory of the linear chain is preserved only in the

inner portion of the chain shown therein, so that Eq. 3 gives an expression of U(t) in terms of the end-

to-end vector Rin of that portion, U(t)¼ hRin(t) � Rin(0)ieq/Na2. Rin(t) at time t is close but not

identical to Rin(0) at time 0 because of the displacement of the inner portion within the edges of the

surviving part of the dilated tube; see purple arrows in Figure 13. Because Rin(t)¼Rin(0)þD1þD2,

with D1 and D2 being the displacement vectors in those edges, we find U(t)¼{hRin(0)2ieqþh(D1þ
D2) �Rin(0)ieq}/Na2¼{Nu0(t)a2þh(D1þD2) �Rin(0)ieq}/Na2. (Note that the surviving part of the

dilated tube constrains Nu0(t) entanglement segments, and thus hRin(0)2ieq ¼ Nu 0(t)a2.)

Furthermore, considering the Gaussian conformation of the inner portion at equilibrium (where

Eq. 3 is defined), we find a relationship 2h(D1 þ D2) � Rin(0)ieq þ hD2
1i þ hD2

2i ¼ 0, where a

relationship valid for the CR–Rouse process,56 jhD2
1i þ hD2

2ij � 2jhD1 � D2ij at t , s½G�CR, has been

used. From this relationship and a simple estimate34 hD2i¼{a0(t) – a}2/4, the above expression of

U(t) is finally rewritten as

UðtÞ ¼ u0ðtÞ � 1

4N
bðtÞf g1=2�1

h i2

ðfor monodisperse linear chainÞ24;35 ð15Þ

From a similar analysis, we find an expression of U(t) of the star chain,

UðtÞ ¼ u0ðtÞ � 1

8Narm

bðtÞf g1=2�1
h i2

ðfor monodisperse star chainÞ33;36 ð16Þ

The second terms of Eqs. 15 and 16 are a correction due to the displacement in the edges of the

surviving part of the dilated tube, but this correction is minor unless the tube is largely dilated to

have a0(t)@ hR2i1=2
eq . Thus, U(t) is close to u0(t) for both linear and star chains, which is similar to the

situation in the absence of CR/DTD; cf. Eq. 4. (For monodisperse linear and star PI, respectively,

U(t) and u0(t) are directly compared in figure S2 of Supporting Information of Matsumiya et al.37

and in figure 9 of Watanabe et al.36). Consequently, the relationship between U(t) and u0(t) is rather

insensitive to the CR and DTD mechanisms. This feature of the dielectric U(t) makes a sharp

contrast to the CR/DTD-sensitivity of the viscoelastic l(t) noted from the factor b(t) in Eq. 14.

This difference between U(t) and l(t) is very useful for an experimental test of the DTD

mechanism. Specifically, we can evaluate the survival fraction u0(t) of the dilated tube from the

dielectric U(t) data (cf. Eqs. 15 and 16) given that the number of equilibrated entanglement

segments b(t) is known. Using these u0(t) and b(t) in Eq. 14, we can calculate the viscoelastic l(t)
expected for the DTD process. Comparison of this calculation with the l(t) data allows us to test

whether the molecular picture of DTD can consistently describe the U(t) and l(t) data. This

experimental test of the DTD mechanism just focuses on the consistency between U(t) and l(t) so

that it is free from delicate assumptions in detailed model calculation of the t dependence of U(t) and

l(t). The results of the test are summarized below.
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1. Test of Molecular Picture of Full-DTD. — Several molecular models43,57–59 assume that the

relaxed portion of the chain behaves as a solvent not contributing to the entanglement, and thus the

tube diameter in a melt is fully dilated to the diameter in a solution having a polymer volume fraction

t¼u0(t). With this full-DTD assumption, the number of equilibrated entanglement segments, b(t),
is related to u0(t) as24,33,34,43

bf�DTDðtÞ ¼ u0ðtÞf g�d
with d ¼ 1:3 for PI ð17Þ

Equation 17 is equivalent to the scaling of the plateau modulus of the solution, GN,soln ¼
GN,bulkt

1þd.

The value of the dilation exponent d is a subject of recent theoretical analyses60,61 (that prefer d
¼1 at short t), as explained later in detail. However, in our experimental test of the molecular picture

of full-DTD, d is to be determined directly from the modulus data of blends containing the long

chains that are entangled among themselves and with much shorter chains. The G0 data of PI 308k/

PI 21k blends34 with t2 � 0.1 serve this purpose; the long chains therein (PI 308k) are entangled

among themselves as well as with the short chains (PI 21k). In Figure 14, the G0 data of those blends

are normalized by a factor of t�ð1þdÞ
2 with d¼1.3 (top panel) and d¼1.0 (bottom panel) and plotted

against the normalized frequency xhs½G�2;bi. Here, hs½G�2;bi is the second-moment average viscoelastic

FIG. 14. — G0 data of PI 308k/PI 21k blends normalized by a factor of t2
�(1þd) with d¼1.3 (top panel) and d¼1.0 (bottom

panel). The normalized data are plotted against the normalized frequency, xhs½G�2;bi. Data are taken from Watanabe et al.34 with

permission.
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relaxation time of the long chain in the blend evaluated by Eqs. 6 and 7, except that G1,m * (x) in Eq.

6 is replaced by G1,m * (kx) where the factor k represents minor retardation of the matrix relaxation

due to the entanglement with the concentrated long chains.34 (This entanglement suppresses CR for

the short matrix chains in the blends to retard their relaxation compared to that in the pure matrix.)

For d¼1.3, the t�ð1þdÞ
2 G0 data of the PI 308k/PI 21k blends are well superposed on the G0 data

of bulk PI 308k (black circles) in the terminal relaxation regime at xhs½G�2;bi, 2, as noted in the top

panel of Figure 14. In contrast, the bottom panel shows that d ¼ 1.0 gives much poorer

superposition, as most clearly noted from comparison of the insets in the top and bottom panels. The

corresponding difference, good and poor superposition for d¼ 1.3 and 1.0, is noted also for the

t�ð1þdÞ
2 G 00 data of the blends as well as for the t�ð1þdÞ

2 G* data of PI 308k solutions in an oligomeric

butadiene.34 Thus, our experimental test of the full-DTD picture adopts d¼1.3, as already shown in

Eq. 17.

Substituting Eq. 17 into Eqs. 15 and 16, we can use the dielectric U(t) data of monodisperse

linear and star PI to evaluate their u0(t) for the case of full-DTD. The viscoelastic relaxation function

obtained from this u0(t), lf-DTD(t)¼{u0(t)}1þd with d¼1.3 (cf. Eqs. 14 and 17), is shown in Figures

15 and 16 with green curves for comparison with the l(t) data of monodisperse linear34,37 and star

PI,51 respectively. (For this comparison, the G*(x) data of linear PI reported in Watanabe et al.34,37

were converted into l(t).)

FIG. 15. — Comparison of normalized relaxation modulus l(t) of monodisperse linear PI (circles) with dielectrically

evaluated full-DTD modulus lf-DTD(t) (curves). For monodisperse linear PI, lf-DTD(t) agrees with the partial-DTD modulus

lp-DTD(t). G*(x) data of linear PI reported in Watanabe et al.34,37 were converted into l(t).

FIG. 16. — Comparison of normalized relaxation modulus l(t) of monodisperse six-arm star PI (circles) with dielectrically

evaluated full-DTD modulus lf-DTD(t) and partial-DTD modulus lp-DTD(t) (green and red curves). Data are taken from Qiao

et al.51 with permission.
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For the PI 308k/PI 21k blends examined in Figure 14, we first need to decompose the U(t) data

of the blend as a whole into contributions U1(t) and U2(t) of the short and long linear chains

(components 1 and 2):34 U(t)¼(1�t2)U1(t)þt2U2(t). The mode distribution of U1(t) was found to

agree well with that of the short chain in monodisperse bulk,34 which enabled easy decomposition.

Then, from those Uj(t), uj
0(t) of the component j was evaluated through a relationship analogous to

Eq. 15 combined with Eq. 17, Uj(t)¼uj
0(t)� (1/4Nj)[{u0(t)}�d/2�1]2 with j¼1,2 and u0(t)¼ (1�

t2)u1
0(t)þt2u2

0(t).34 (This relationship considers the dilated tube diameter to be common for the

long and short chains, as noted for the factor in the second term, {u0(t)}�d/2¼af-DTD
0(t)/a for full-

DTD.) The corresponding viscoelastic relaxation function, lf-DTD(t)¼ {u0(t)}1þd with d¼ 1.3, is

compared with the l(t) data in Figures 17.34

For the monodisperse linear PI chains (Figure 15), lf-DTD(t) (green curves) is in good

agreement with the l(t) data (circles) in the entire range of t. Thus, the full-DTD assumption is valid

for consistently describing the U(t) and l(t) data of those chains. This validity has been confirmed

also for G0(x) and G 00(x) data in the frequency domain (see figure S1 in Supporting Information of

Matsumiya et al.37).

In contrast, for the monodisperse star PI (Figure 16) as well as for the blends of linear PI (Figure

17), lf-DTD(t) (green curves) is considerably smaller than the l(t) data at intermediate t. Namely, the

molecular picture of full-DTD significantly overestimates the viscoelastic relaxation at those t, as

noted also in the frequency domain.33,34 (Similar results have been found also for a Cayley-tree type

branched PI.56) In particular, for the blends with a small volume fraction of the long chain (t2¼0.1

and 0.2), this overestimation is most significant at t¼ 10�3–10�1 s where the short matrix chain

(majority in the blends) has fully relaxed but the long chain has not; see Figure 17. Nevertheless, at

either longer or shorter time scales, lf-DTD(t) agrees with the l(t) data of the blends. These results

suggest the origin of the failure of the full-DTD picture, as discussed in the following section.

Here, it is informative to examine the prediction of the Milner–McLeish (MM) model58 for

entangled monodisperse star chains. The MM model is a sophisticated tube model that incorporates

the stochastic, first-passage nature of the arm retraction but still adopts the full-DTD picture. The

normalized viscoelastic and dielectric relaxation functions of this model can be summarized as33,58

lðtÞ ¼ 1þ d

Leq

Z Leq

0

1� z

Leq

� �d

exp � t

sMMðzÞ

� �
dz ð18Þ

FIG. 17. — Comparison of normalized relaxation modulus l(t) of PI 308k/PI 21k blends (circles) with dielectrically

evaluated full-DTD modulus lf-DTD(t) and partial-DTD modulus lp-DTD(t) (green and red curves). Data for t2¼0.1–0.5 are

taken from Watanabe et al.34,35 with permission, and the data for t2¼1.0 from Figure 15.
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and

UðtÞ ¼ 1

KLeq

Z Leq�a

0

1þ NðzÞf gexp � t

sMMðzÞ

� �
dz ð19aÞ

with

K ¼ 1� a

Leq

þ 1

8Narm

1� a

Leq

� ��d=2
( )2

ð19bÞ

NðzÞ ¼ d

8Narm

1� z

Leq

� ��ð1þdÞ
� 1� z

Leq

� ��ð1þd=2Þ
( )

ð19cÞ

In Eqs. 18 and 19, Leq¼Narma is the equilibrium contour length of the star arm consisting of Narm

entanglement segments, sMM(z) is a time required for the arm retraction over a contour length z

(that includes both shallow and deep retraction, the latter being associated with an entropic

penalty), and d is the dilation exponent. Figure 18 compares the MM calculation (with d¼1.3) and

the l(t) and U(t) data of six-arm star PI (80k)6 sample. (The data and calculation in the frequency

domain published in Watanabe et al.33 were converted into the time domain.) For an adequate

choice of the model parameters, the MM model excellently describes the l(t) data; see red curve

in the top panel. However, the model with the same parameters gives the dielectric U(t)

considerably larger than the data at long t, as shown with the red curve in the bottom panel. An

adjustment of the parameters allows the MM model to describe the U(t) data (cf. green curve in the

bottom panel), but the viscoelastic l(t) calculated with those adjusted parameters (green curve in

the top panel) is significantly smaller than the data. Namely, even the sophisticated tube model

fails to consistently describe the viscoelastic and dielectric data of star PI, given that the model

adopts the full-DTD picture. (The failure is noted also for the model calculation with d¼1.) This

result for the MM model is consistent with the results of experimental test of the full-DTD picture

presented in Figure 16: the MM fitting of the U(t) data gives l(t) being smaller than observed (cf.

green curve in top panel of Figure 18), which is similar to the experimental results seen in Figure

16.

2. Test of Molecular Picture of Partial-DTD. — The local CR process is accumulated during

the relaxation to expand a length scale of lateral displacement allowed for the entanglement

segments. DTD is the molecular picture that makes coarse-graining of this accumulation in both

length and time scales to define an effectively dilated tube in a given time scale.1,2,24,43 Thus, the

DTD picture should be valid if the length and time scales are consistently coarse-grained. For a test

of this consistency, the number of equilibrated entanglement segments assumed in the full-DTD

picture, bf-DTD(t) ¼ {u 0(t)}�d (Eq. 17), should be compared with the maximum number of

equilibrated segments allowed by the CR mechanism, bCR(t) ¼ 1/wCR(t), with wCR(t) being a

survival function specified below.

For a monodisperse linear chain composed of N entanglement segments, wCR(t) can be

expressed as36,51

for monodisperse linear chain

wCRðtÞ ¼
1

N

XN�NCLF

p¼1

exp � r
CR;linear½ �

p

sCR

t

 !
þ
XNCLF

p¼1

exp � r
CLF;linear½ �

p

sCLF

t

 !( )
ð20Þ

with
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r CR;linear½ �
p ¼ sin2 pp

2N

� �
sin�2 p

2N

� �
ð21aÞ

and

r CLF;linear½ �
p ¼ sin2 pp

2NCLF

� �
sin�2 p

2NCLF

� �
; NCLF ¼

ffiffiffiffi
N
p

ð21bÞ

Here, sCR denotes the CR time defined for the displacement of entanglement segments and is

equivalent to the known dielectric CR time for the end-to-end fluctuation, s½e�CR¼2s½G�CR (s½e�CR has been

confirmed to coincide with 2s½G�CR for dilute PI probes in the CR regime34). Equation 20 considers the

CR–Rouse process of a given chain (probe) activated by the global motion of the surrounding

chains (the first summation in Eq. 20) and by the contour length fluctuation (CLF) of the probe

(equivalent to the surrounding chains in the monodisperse system; the second summation). NCLF is

the number of entanglement segments relaxing through CLF that occurs with a known

characteristic time sCLF (intrinsic Rouse time of the whole chain backbone). The factor

r
½ CR;linear�
p indicates a relaxation time ratio of p-th CR mode to the slowest CR mode, and the other

factor r
½ CLF;linear�
p , the ratio for p-th and slowest CLF modes. (For high-M linear PI, the CLF term in

Eq. 20 is not important at long t. Thus, Eq. 20 with NCLF¼0 was used in Watanabe et al.35 However,

for completeness, Eq. 20 with NCLF ¼
ffiffiffiffi
N
p

was used in this article to evaluate wCR(t) for

monodisperse linear PI examined in Figure 15.)

For the star chain having Narm entanglement segments per arm, wCR(t) is also given by Eqs. 20

and 21, where N is replaced by Narm and the relaxation time ratios, rp, by the Rouse-type ratios for a

tethered chain,36,51

FIG. 18. — Test of full-DTD model (Milner-McLeish model) for viscoelastic and dielectric relaxation functions, l(t) and

U(t), of monodisperse star PI (80k)6. The model parameters are common for l(t) and U(t) (but differ for the red and green

curves). For further detail, see text. Data and calculation in the frequency domain33 were converted into the time domain.
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r CR;star½ �
p ¼ sin2 2p� 1f gp

2 2Narm þ 1f g

� �
sin�2 p

2 2Narm þ 1f g

� �
ð22aÞ

r CLF;star½ �
p ¼ sin2 2p� 1f gp

2 2NCLF þ 1f g

� �
sin�2 p

2 2NCLF þ 1f g

� �
; NCLF ¼

ffiffiffiffiffiffiffiffiffi
Narm

p
ð22bÞ

The tube model generally assumes that the branching point of the star chain is fixed in space until the

star arm fully relaxes, which leads to the use of rp for the tethered chain in Eq. 22.

Here, a comment needs to be made for the dilute linear probes examined in Figure 5. In

principle, the CLF contribution specified above also needs to be considered for these probes.

However, all those probes have large N2 (�24), so that their relaxation at xhs½G�2;bi � 100 (examined

in Figure 5) is dominated by the low-order CR–Rouse modes with the index up to p @ 10 and is

negligibly contributed from the fast CLF modes. For this reason, those linear probes exhibit the

universal terminal relaxation that coincides with the CR–Rouse relaxation (solid curve in Figure 5).

(At low xhs½G�2;bi � 100, l(t)¼u0(t)/bCR(t)¼u0(t)wCR(t) evaluated on the basis of Eqs. 14 and 20 is

numerically indistinguishable from a reduced modulus {M2/N2qt2RT}GCR(t), with GCR(t) being

given by Eq. 8.) The situation is a little different for the star probes examined in Figure 6. Those star

probes have just moderately large Narm (¼12 and 16), and their terminal relaxation is non-negligibly

contributed from the CLF modes. Because of this CLF contribution, the star probes exhibit less

universal terminal relaxation compared to the linear probes (cf. Figures 5 and 6), as explained

earlier.

Now, we compare bf-DTD(t) and bCR(t) (¼ 1/wCR(t)) for the monodisperse linear and star

chains examined in Figures 15 and 16. (lf-DTD(t) shown therein is equivalent to bf-DTD(t)¼
{lf-DTD(t)}�d/(1þd).) For those chains, sCLF and sCR (¼s½e�CR¼2s½G�CR; cf. Eqs. 11 and 12 with M1¼
M2 ¼M) are known, so that the comparison can be straightforwardly made. The results are

shown in Figures 19 and 20, where the black arrows indicate the second-moment average

viscoelastic relaxation time of the monodisperse chain, hs½G�m i (¼ product of the zero-shear

viscosity and recoverable compliance).

For the linear chains (Figure 19), bf-DTD(t) (blue circles) agrees with bCR(t) (red curves) within

uncertainties of evaluation of these b (~10% for each) in the entire range of t , hs½G�m i, namely,

during the whole process of viscoelastic relaxation. (For PI 308k at long t~ hs½G�m i, bf-DTD(t) tends to

become even smaller than bCR(t).) Thus, the CR–Rouse dynamics allows the equilibrated

entanglement number b(t) to increase up to bf-DTD(t) considered in the full-DTD picture. For this

FIG. 19. — Equilibration number of entanglement segments of monodisperse linear PI assumed in the full-DTD molecular

picture,bf-DTD(t) (blue circles). The maximum equilibration number allowed by the CR–Rouse mechanism, bCR(t) evaluated

in this article (cf. Eqs. 20 and 21), is shown with red curves. bf-DTD(t) data are taken from Watanabe et al.35 and Supporting

Information of Matsumiya et al.37 with permission.
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reason, the normalized viscoelastic relaxation function lf-DTD(t) deduced from this picture agrees

with the l(t) data, as noted in Figure 15.

In contrast, for the monodisperse star chains, bf-DTD(t) is significantly larger than bCR(t) (by a

factor beyond the uncertainty explained above), and thus the CR–Rouse dynamics does not allow

the actual b(t) to increase up to bf-DTD(t) at intermediate to long time scales (at t . 10�2 s); see Figure

20. Consequently, lf-DTD(t) deviates from the l(t) data at those t, as noted in Figure 16. In fact, in

Figure 20, the failure of the full-DTD picture can be noted for bf-DTD(t) itself: bf-DTD(t) reaches its

maximum possible value, bmax ¼ Narm (horizontal dashed line) corresponding to the full

equilibration of the whole arm, at t considerably shorter than hs½G�m i, which does not allow the full-

DTD picture to work in the terminal relaxation regime. (In contrast, the CR-equilibrated number

bCR(t) remains smaller than bmax in the entire range of t , hs½G�m i.)
Here, it is informative to consider how the full-DTD picture fails for the star chains and works

for the linear chains. For an arm of a given (probe) star chain, the fully dilated tube diameter

af�DTD
0ðtÞ (¼a{bf-DTD(t)}1/2¼a{u0(t)}�d/2) is available as a length scale of equilibration in a time

scale of t thanks to the motion of surrounding star chains; however, this length scale is too large

for the CR–Rouse motion of the probe arm to explore within that time scale. Such an unusably

large af-DTD
0(t) is a consequence of the broad relaxation mode distribution of the star chains that

significantly decreases u0(t) at short t. In contrast, the monodisperse linear chains exhibit a narrow

terminal relaxation mode distribution that allows bf-DTD(t) to stay small and comparable to bCR(t)

in the entire range of t (cf. Figure 19): bf-DTD(t) @ 3� N even at t¼ hs½G�m i. This narrow mode

distribution, enabling the CR–Rouse motion to cover the length scale of af-DTD
0(t) in time, is the

reason for the validity of the full-DTD picture for the linear chains noted in Figure 15.

For the PI 308k/PI 21k binary blends, we can similarly examine validity of the full-DTD

picture. Specifically, bf-DTD(t) (¼{lf-DTD(t)}�d/(1þd) with lf-DTD(t) being shown in Figure 17) needs

FIG. 20. — Equilibration number of entanglement segments of monodisperse six-arm star PI assumed in the full-DTD

molecular picture, bf-DTD(t) (blue circles). The maximum equilibration number allowed by the CR–Rouse mechanism,

bCR(t), is shown with red curves. Black horizontal line shows the number of entanglements per star arm, Narm. bf-DTD(t) and

bCR(t) data are taken from Watanabe et al.36 with permission.
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to be compared with bCR,1(t) and bCR,2(t) defined for the short and long chains, PI 21k and PI 308k.

The comparison is made by separately considering the CR–Rouse times for the long and short

chains on the basis of empirical Eq. 11 and by taking into account a dielectrically detected moderate

retardation of the short chain relaxation due to the entanglement with the long chains.35 The results

of this comparison are presented in Figure 21. For simplicity, bCR,1(t) and bCR,2(t) used in the

comparison were evaluated just for the CR–Rouse relaxation, namely, with the aid of Eq. 20 but

without incorporating the CLF contribution.35 However, for the dominant part of the long chain

relaxation at long t, the CLF contribution is minor and the lack of this contribution in bCR,1(t) and

bCR,2(t) is not important.

For the blends with a small volume fraction of the long chain, t2¼0.1 and 0.2, Figure 21 shows

that bf-DTD(t) (blue circle) remains close to bCR,1(t) (green curve) and bCR,2(t) (red curve) at short t

up to the terminal relaxation time of the short chain, s½G�1;b (green arrow). (Note also that bCR,1(t) in

that range of t remains smaller than its maximum possible value, N1, shown with the horizontal

green dotted line.) However, at intermediate t where the short chain has fully relaxed and only the

long chain sustains the modulus, bf-DTD(t) becomes considerably larger than bCR,2(t) so that the

long chain cannot explore, in time, the length scale of fully dilated tube diameter af-DTD
0(t)¼a{bf-

DTD(t)}1/2. Nevertheless, at longer t where bCR,2(t) approaches its maximum possible value, N2

(horizontal black dotted line), bf-DTD(t) becomes smaller than bCR,2(t) and the long chain can be

FIG. 21. — Equilibration number of entanglement segments in PI 308k/PI 21k blends assumed in the full-DTD picture, bf-

DTD(t) (blue circles). The maximum equilibration numbers for the short and long chains (PI 21k and PI 308k) allowed by the

CR–Rouse mechanism, bCR,1(t) and bCR,2(t), are shown with green and red curves. Horizontal lines show the number of

entanglements per short and long chains, N1 and N2. The plots are vertically shifted by the factors A as indicated so as to avoid

heavy overlapping. Data are taken from Watanabe et al.34,35 with permission.
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equilibrated over the diameter af-DTD
0(t) in time. For those blends, the failure of the full-DTD

picture is noted exactly in the intermediate time scale where bf-DTD(t) . bCR,2(t); compare Figures

17 and 21 for t2¼0.1 and 0.2. It should be noted that the rapid and intensive relaxation of the short

chain leads to a large decrease of u 0(t) and a large increase of bf-DTD(t) at t � 2s½G�1;b (cf. Figure 21)

thereby resulting in the failure of the full-DTD picture. This role of the fast relaxation of the short

chain in the blends with small t2 is similar to that of intensive fast relaxation of the star chains having

a broad mode distribution. Consequently, the blend with larger t2¼0.5 exhibits less intensive fast

relaxation of the short chain so that its bf-DTD(t) is only slightly larger than bCR,2(t) at intermediate

time scale (cf. Figure 21), which results in just slight failure of the full-DTD picture for this blend

(Figure 17). Finally, for t2¼1 (bulk PI 308k), bf-DTD(t)� bCR,2(t) and thus the full-DTD picture is

valid in the entire range of t up to the terminal relaxation time of the long chain, s½G�2;b (red arrow); cf.

Figures 17 and 21.

The results of the test of the full-DTD picture presented in Figures 19–21 clearly indicate that

the full-DTD picture fails in the range of t where bf-DTD(t) . bCR(t). However, the test does not

rule out the tube dilation up to bCR(t). In fact, direct comparison of the viscoelastic and dielectric

data of monodisperse PI unequivocally indicates that the entanglement is not fixed in space (cf.

Figure 3). Namely, in the terminology of the tube model, the CR/DTD process undoubtedly

occurs for the monodisperse polymers. Thus, a molecular picture of partial-DTD is naturally

introduced as24,35,51

for monodisperse polymers: bp�DTDðtÞ ¼ min bf�DTDðtÞ; bCRðtÞ½ � ð23Þ

The corresponding survival fraction of the partially dilated tube, u0(t), is evaluated from the

dielectric U(t) data and the sCR data (¼s½e�CR¼2s½G�CR; cf. Eqs. 11 and 12 with M1¼M2¼M): the sCR

data give bCR(t)¼1/wCR(t) through Eqs. 20–22, and Eqs. 15 and 16 combined with Eq. 23 allow us

to determine u0(t) and bp-DTD(t) from the bCR(t) value and the U(t) data.35,51 The viscoelastic lp-

DTD(t) for the partial-DTD picture is simply given by Eq. 14 with b(t)¼bp-DTD(t). In Figures 15 and

16, lp-DTD(t) thus obtained is shown with the red curves. For monodisperse linear PI, bf-DTD(t) �
bCR(t) (cf. Figure 19) so that lp-DTD(t) coincides with lf-DTD(t) and excellently describes the l(t)

data (cf. Figure 15). For monodisperse star PI, lp-DTD(t) is considerably larger than lf-DTD(t) and

agrees well with the l(t) data (cf. Figure 16).

For the PI 308k/PI 21k blends, the above partial-DTD picture is extended to separately evaluate

bp-DTD(t) for the short and long chain components (in a way corresponding to that explained for

Figure 21), and the resulting lf-DTD(t) is shown in Figure 17 with the red curve.35 This lf-DTD(t) is in

excellent agreement with the l(t) data.

All above results indicate that the partial-DTD picture (including the full-DTD picture for the

case of bf-DTD , bCR) is valid for monodisperse PI as well as blends of linear PI. The success of the

partial-DTD picture has been confirmed also for Cayley-tree type branched PI.56 The success of the

partial-DTD picture indicates that the tube dilates (i.e., the entanglement loosens) to the maximum

length scale allowed by the motion of the tube-forming chains and by the CR motion of the probe

chain in a given time scale. In other words, the DTD picture is valid given that the length and time

scales are consistently coarse-grained, as noted in Figures 19–21.

It is the comparison of dielectric and viscoelastic data that revealed the success of the partial-

DTD picture for describing the entanglement dynamics. This success in turn demonstrates the

importance of the comparison of those data. In fact, the comparison is useful also for dipole-

inverted PI: coherence of the chain motion in entangled bulk and lack of this coherence in

unentangled solutions have been successfully deduced from comparison of the viscoelastic and

dielectric data.28
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E. DUALITY OF TUBE FOR RELAXATION TIME AND RELAXATION INTENSITY

For entangled PI having the type-A dipoles, the relationship between the viscoelastic l(t) and

dielectric U(t) data is in accord to the partial-DTD picture that makes consistent coarse-graining of

the length and time scales according to the CR–Rouse dynamics, as demonstrated in the analysis

shown in Figures 15–17 and 19–21. However, this picture just describes the relationship between

the l(t) and U(t) data (the latter giving u0(t)) and does not specify the t dependence of those data. For

the terminal relaxation time characterizing this t dependence, the DTD effect has been examined

through comparison of the data for PI probe in high-M PI matrix and in monodisperse bulk.37,40 The

results are summarized below.

1. Viscoelastic and Dielectric Data of Linear PI Probe in DTD-Free Environment. — Figure

22 shows viscoelastic and dielectric losses, G 00 and e 00, measured for a PI 43k/PI 1.1M blend

containing dilute linear PI 43k probe (t1¼0.1).37 The blue triangles and black circles represent the

data of PI 43k and PI 1.1M in respective monodisperse bulk. The probe relaxation in the blend is

clearly detected as the peak of the G 00 and e 00 data at high x; see red circles. This relaxation is

observed also for the G0 and {e0�e0} data, but much less clearly because these data are less sensitive

to fast and weak relaxation of the probe compared to the G 00 and e 00 data.37 For this reason, the

following discussion focuses on the G 00 and e 00 data.

As noted in Figure 22, the probe relaxation is slower in the blend (in the high-M matrix) than in

its monodisperse bulk, which suggests that the CR mechanism for the probe is suppressed in the

blend. For quantitative discussion of this suppression, the blend data need to be decomposed into

the contributions from the probe and matrix (short and long chains). This decomposition can be

made on the basis of a general blending rule for the viscoelastic and dielectric loss data of the blend,

Gb
00(x) and eb

00(x):37

G00
b ðxÞ ¼ t1G00

1;bðxÞ þ t2G00
2;bðxÞ ð24Þ

FIG. 22. — Viscoelastic and dielectric data of PI 43k/PI 1.1M blend (t1¼0.1) at 40 8C. Data are taken from Matsumiya et

al.37 with permission.
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e00b ðxÞ ¼ t1e
00
1;bðxÞ þ t2e

00
2;bðxÞ ð25Þ

Here, G2,b
00(x) and e2,b

00(x) represent the viscoelastic and dielectric losses of the long (matrix)

chain in the blend reduced by its volume fraction t2, and G1,b
00(x) and e1,b

00(x) are the losses of the

short probe reduced by t1 (¼ 1� t2). G2,b
00(x) and e2,b

00(x) do not coincide with G2,m
00(x) and

e2,m
00(x) of the pure matrix (black circles in Figure 22) because of the partial relaxation of the long

matrix chains activated by the short probe motion. However, for the blend with small t1 (¼0.1 in

Figure 22), we can satisfactorily express G2,b
00(x) and e2,b

00(x) in terms of the G2,m
00(x) and

e2,m
00(x) data to evaluate G1,b

00(x) and e1,b
00(x) of the probe of our interest, as explained below.37

The top panel of Figure 22 shows that the probe (PI 43k) in the blend has fully relaxed at high x
@ 10 s�1, and the corresponding probe motion activates partial viscoelastic relaxation of the matrix.

Consequently, the terminal relaxation of the matrix (and the blend as a whole), seen at much lower

x, is faster and less intensive compared to that of the pure matrix. This feature enables us to express

G2,b
00(x) of the matrix in the terminal relaxation zone in terms of the G2,m

00(x) data of the pure

matrix (black circles in the top panel of Figure 22) as

Gterminal 00
2;b ðxÞ ¼ I2G00

2;mðk
G½ �

2 xÞ ð26Þ

The factors I2 and k½G�2 represent the fractional intensity reduction and acceleration of the terminal

relaxation of the matrix in the blend. Validity of Eq. 26 is noted in the top panel where the green

curve shows the shifted data of pure matrix, I2G
0 0

2;mðk
½G�
2 xÞ with the factors I2¼ 0.89 and k½G�2 ¼

0.89.37 This green curve excellently describes the Gb
00(x) data of the blend at low x.

At high x where the probe of our interest (PI 43k) is still relaxing, Gterminal
2;b

0 0(x) given by Eq.

26 should differ from the actual loss modulus G2,b
00(x) of the matrix in the blend, because the

matrix entanglement with the probe chains has not fully relaxed at those x. At such high x, the

matrix partially relaxes viscoelastically together with the probe. Then, the loss modulus

difference of the matrix representing this partial relaxation, DG2,b
00(x)”G2,b

00(x)�Gterminal
2;b

0 0(x),

should be close to G1,b
00(x) of the probe in the blend, except that the relaxation intensity is smaller

for DG2,b
00(x) by a factor of 1� I2 (because the fraction I2 of the intensity relaxes at low x as

represented by Gterminal
2;b

0 0(x)). Thus, substituting G2,b
00(x)¼ DG2,b

00(x)þ Gterminal
2;b

0 0(x) @ (1 �
I2)G1,b

00(x)þ I2G2,m
00(k½G�2 x) in Eq. 24, we can express G1;b}ðxÞ of the probe in terms of the

Gb
00(x) and G2,m

00(x) data of the blend and pure matrix as

G00
1;bðxÞ@

1

1� t2I2

G00
b ðxÞ � t2I2G00

2;mðk
G½ �

2 xÞ
n o

ð27Þ

(Note that a modulus difference corresponding to the above DG2,b
00(x) does not appear in Eq. 6 for

short matrix chains in the blends examined in Figures 4–6 because those short chains are the major

component therein and fully relax within a time scale of the long–short entanglement relaxation.)

The situation is much simpler for dielectric e1,b
00(x). In general, the dielectric relaxation mode

distribution (shape of e 00 curve) of linear PI is insensitive to CR/DTD.23,24,34,35 In the bottom panel

of Figure 22, this insensitivity is noted as the similarity of the x dependence of e 00 data of the PI 43k/

PI 1.1M blend, bulk PI 43k, and bulk PI 1.1M (matrix) at x . 300 s�1. Thus, the reduced dielectric

loss of the matrix appearing in Eq. 25, e2,b
00(x), is satisfactorily expressed in terms of the e2,m

00(x)

data of the pure matrix as e2,b
00(x)¼e2,m

00(k½G�2 x), where k½G�2 is the acceleration factor determined

for the viscoelastic data. Then, the reduced dielectric loss of the probe PI, e1,b
00(x), is experimentally

evaluated as37 (cf. Eq. 25)

e001;bðxÞ ¼
1

t1

e00b ðxÞ � t2e
00
2;mðk

G½ �
2 xÞ

n o
ð28Þ
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Figure 23 compares G1,b
00(x) (unfilled symbols) and e1,b

00(x) (filled symbols) of short probe chains

entangled with long matrix (PI 1.1M) thus evaluated from Eqs. 27 and 28.37 k½G�2 ¼0.94 for the PI

179 probe, and k½G�2 ¼0.89 for the three other probes. For direct comparison, e1,b
00(x) is multiplied

by a factor of 10A in order to match its peak height with that of G1,b
00(x), and a contribution from the

intrinsic, local Rouse relaxation within the entanglement segment has been subtracted from

G1,b
00(x). (e1,b

00(x) does not have this contribution.) The volume fraction is t1¼0.2 for the PI 179k

probe, and t1¼0.1 for the other three probes, PI 21k, PI 43k, and PI 99k. Judging from the effective

molecular weight associated to the probe–probe (short–short) entanglement, Me,pp¼Me,bulk PI/t1
1.3

¼41k (for t1¼0.2) and Me,pp¼100k (for t1¼0.1), the PI 179k probe chains are mostly entangled

with the PI 1.1M matrix but also among themselves moderately, whereas the three shorter probes

are entangled only with the matrix.

Here, a comment needs to be added for the probe losses shown in Figure 23. The matrix losses

G2,m
00(k½G�2 x) and e2,m

00(k½G�2 x) subtracted in Eqs. 27 and 28 are the extrapolation of the viscoelastic

and dielectric losses of the matrix at low x (where the probe has fully relaxed) to high x where the

probe is still relaxing. Before completion of the probe relaxation, the matrix would behave more or

less similar to that in monodisperse bulk, and its actual losses should be smaller than G2,m
00(k½G�2 x)

and e2,m
00(k½G�2 x) appearing in Eqs. 27 and 28. Thus, G1,b

00(x) and e1,b
00(x) shown in Figure 23

should be regarded as the smallest possible viscoelastic and dielectric losses of the probe in the

blend. Nevertheless, the largest possible losses obtained from Eqs. 27 and 28 with k½G�2 ¼1 were only

slightly larger than those shown in Figure 23, as demonstrated in Matsumiya et al.37 This close

coincidence of the smallest and largest possible loss values, reflecting the k½G�2 value close to unity37

(k½G�2 � 0.89 for the matrix entangled with the four probes examined in Figure 23), enables us to

reliably use G1,b
00(x) and e1,b

00(x) shown in Figure 23 as the real losses of the probes.

For the PI 21k and PI 43k probes, G1,b
00(x) agrees surprisingly well with 10Ae1,b

00(x) to satisfy

Eq. 5b, as clearly noted in Figure 23. This experimental fact indicates that the matrix–probe (long–

short) entanglement constraining the probe motion is fixed in space in the time scale of the probe

relaxation. Namely, these two probes relax in the DTD-free environment. In fact, the x dependence

of their G1,b
00(x) and e1,b

00(x) is very close to that expected for a chain being trapped in a fixed tube

and relaxing through reptation and CLF; GreptþCLF
00~ ereptþCLF

00~x�1/4 at high x.1,2 For the PI 99k

probe, the G1,b
00(x) and 10Ae1,b

00(x) data are slightly different around their peaks, which indicates

that the DTD mechanism is not perfectly quenched for this probe entangled with the PI 1.1M matrix

(because M2 of the matrix is not sufficiently larger than M1 of the probe). Finally, for the PI 179k

probe having a larger M1, a moderate deviation is clearly noted between G1,b
00(x) and 10Ae1,b

00(x),

although this deviation is much less prominent compared to the deviation seen for monodisperse

FIG. 23. — Comparison of G1,b
00 (unfilled symbols) and e1,b

00 (filled symbols) of linear PI probe entangled with PI 1.1M

matrix at 40 8C. The volume fraction is t1¼0.2 for PI 179k probe and t1¼0.1 for the other three probes. Data are taken from

Matsumiya et al.37 with permission.
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linear PI in bulk; see the top panel of Figure 3 where G 00 and e 00 exhibit significant differences not

only in their relaxation mode distribution but also in the peak frequency. This moderate deviation

seen for the PI 179k probe emerges because the matrix–probe entanglement relaxes to some extent

in the time scale of probe relaxation to activate DTD for the probe (and because the moderate probe–

probe entanglement also relaxes to activate DTD).

2. Relaxation Time in DTD-Free Environment. — In relation to the validity of the DTD picture

discussed for Figures 15–17, it is informative to examine the magnitude of acceleration of the

relaxation due to DTD. For monodisperse linear PI chains, the full-DTD relationship (Eqs. 14 and

17) is valid between the viscoelastic l(t) and the dielectrically evaluated tube survival fraction u0(t),
as revealed in Figure 15. This validity reflects the narrow relaxation mode distribution of the linear

chains that allows the number b(t) of the equilibrated entanglement segments to stay small; in

Figure 19, b(t) associated to the terminal viscoelastic relaxation is evaluated as bl@ 3 (log bl@ 0.5)

at t¼hs½G�m i for all linear PI samples examined.

If the relaxed portion of the chain behaves as a solvent in all aspects of the relaxation dynamics

of monodisperse linear PI chains (i.e., not only for the relationship between l(t) and u0(t)), then the

terminal relaxation time of the monodisperse linear PI chain, s~M3.5/M1:5
e , is naively expected to

increase by a factor of b1:5
l @ 5 when the CR/DTD mechanism working in the monodisperse bulk

system is quenched. (The effective entanglement molecular weight determining the relaxation time

should be proportional to bl if the relaxed portion behaves as the solvent in all aspects.) In the

following, this expectation is tested with the aid of the data shown in Figure 23.

For the PI probes examined in Figure 23, we can evaluate the viscoelastic and dielectric

relaxation times, s½G�1;b and s½e�1;b, as reciprocal of the peak frequencies of the G1,b
00(x) and e1,b

00(x)

data. (The corresponding ‘‘storage parts’’ of those probes, G1,b
0(x) and e1,b

0(x), cannot be

accurately evaluated because Gb
0(x) and Deb

0(x) data of the blends are rather insensitive to the fast

and weak relaxation of the probes having smallt1 (¼0.1 or 0.2). For this reason, the second-moment

average relaxation time (cf. Eq. 7) cannot be used in the discussion below.) From the G1,m
00(x) and

e1,m
00(x) data of the probes in the monodisperse bulk state, the relaxation times s½G�1;m and s½e�1;m are

similarly evaluated as reciprocal of the peak frequencies. The relaxation mode distribution of

e1,b
00(x) in the blends agrees with that of the e1,m

00(x) data of monodisperse bulk PI,37 so that the

s½e�1;b=s
½e�
1;m ratio is equivalent to a ratio of the longest dielectric relaxation times in the fixed and

unfixed entanglement environments. This is not the case for the viscoelastic data: the mode

distribution is narrower for G1,b
00(x) than for G1,m

00(x) (cf. Figures 22 and 23), and thus the

s½G�1;b=s
½G�
1;m ratio should be somewhat different from (larger than) the ratio of the longest viscoelastic

relaxation times. However, this small difference does not affect the following discussion that

mainly focuses on the dielectric s½e�1;b=s
½e�
1;m ratio.

For the four PI probes examined in Figure 23, Figure 24 shows plots of the s½e�1;b=s
½e�
1;m and

s½G�1;b=s
½G�
1;m ratios evaluated above37 against the entanglement number per probe chain, M1/Me (¼4.2–

35.8); see green circles. For comparison, black squares show the ratios obtained for shorter, lightly

entangled probes in their bulk and in the PI 1.1M matrix (after minor correction of the monomeric

friction in bulk).39 The red curves are the results of CR–Rouse analysis explained later. The high-M
matrix should have no effect on the relaxation time of unentangled probe if the monomeric friction

is kept constant, whereas the matrix effect (suppression of CR/DTD) should become prominent for

the entangled probe. This behavior is clearly noted in Figure 24 on the increase of M1/Me from 1 to

~4. A further increase of M1/Me results in gradual decreases of the s½e�1;b=s
½e�
1;m and s½G�1;b=s

½G�
1;m ratios, and

thus the matrix effect becomes less prominent with increasing M1/Me; see four green circles.

In the entire range of M1/Me, the dielectric s½e�1;b=s
½e�
1;m ratio (top panel of Figure 24) is

significantly smaller than the naively expected ratio explained above, s½e�1;b=s
½e�
1;m @ b1:5

l @ 5 (log

s½e�1;b=s
½e�
1;m @ 0.7). This experimental fact indicates that the relaxed portion of the chains does not

behave as a solvent with respect to the end-to-end relaxation time of the probe, despite the fact that
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the viscoelastic l(t) data and the dielectrically evaluated u0(t) of monodisperse linear PI obey the

full-DTD relationship (cf. Figure 15). This relationship is just based on the molecular picture that

the relaxed portion of the chains, having the fraction 1� u0(t), widens the entanglement mesh

(modeled as the tube) to the level in a solution having a concentration u0(t). Namely, the full-DTD

relationship does not specify anything related to the chain motion in the dilated tube over a length

scale greater than dilated tube diameter. In contrast, the naive expectation is based on an assumption

that the chain moves along the dilated tube with its intrinsic friction. Thus, the deviation between

the s½e�1;b=s
½e�
1;m data and the expectation is not contradictory to the validity of the full-DTD relationship

between l(t) and u0(t) but suggests a hypothesis explained below.

FIG. 24. — Relaxation time ratios s½e�1;b=s
½e�
1;m and s½G�1;b=s

½G�
1;m experimentally evaluated for PI probes in the blends with PI 1.1 M

matrix and in monodisperse bulk at 40 8C. Red curves show the results of CR–Rouse analysis. Note that the full scale of the

vertical axis in the bottom panel is twice of that in the top panel. Data are taken from Watanabe et al.37,39 with permission.

FIG. 25. — Illustration of dual tube for a linear chain in monodisperse bulk. The a is the diameter of undilated tube, and a0 is the

diameter of fully dilated tube that specifies the range of lateral motion of the chain to describe the extra modulus decay due to

DTD. A tube specifying the longitudinal motional path of the chain has the diameter a* (,a0) and wriggles in the dilated tube.
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From the above deviation, the linear PI chain in the monodisperse bulk appears to be

longitudinally moving not along the fully dilated tube but along a thinner tube that wriggles in the

fully dilated tube, as illustrated in Figure 25. The dilated tube, being introduced as a model to

represent the loosening of the entanglement constraint, seems to have a dual structure.37 A wide

tube having the diameter a0 describes the constraint for the chain motion in a direction lateral to the

chain backbone, thereby describing the extra decay of the viscoelastic modulus on the entanglement

loosening (by the full-DTD factor of {a/a0}2¼{u 0}d for monodisperse linear chains). In contrast, a

thinner tube having the diameter a* (with a , a* , a0) specifies the longitudinal motional path of

the chain that determines the dielectric relaxation time s½e�1;m (¼end-to-end fluctuation time), and the

wriggling motion of this path tube in the wider tube allows the lateral equilibration over the length

scale of a0 and the corresponding modulus decay to occur. Within this hypothesis, the viscoelastic

relaxation time s½G�1;m is affected by this modulus decay on the entanglement loosening, and thus the

suppression of the loosening (i.e., blending in the high-M matrix) increases the viscoelastic s½G�1 of

the probe more significantly than the dielectric s½e�1 , which is consistent with the observation in

Figure 24. In the following, the dual tube hypothesis is tested through a simple CR–Rouse analysis.

3. CR–Rouse Analysis of Relaxation Time.37 — We here focus on the dielectric relaxation time

(end-to-end fluctuation time) s½e�1;m of the linear PI chain in its monodisperse bulk. This s½e�1;m is

assigned as the time required for reptation (after CLF) along the motional path tube having the

diameter a* (cf. Figure 25). For this reptation to occur, all dilated segments of the size a* should

balance their tension through simultaneous CR-equilibration because of the coherent nature of the

reptative motion. This simultaneous CR-equilibration occurs through accumulation of local CR-

equilibration in all dilated segments.

The number of those dilated segments per chain is given by N*¼N/ b*, where b*¼ (a*/a)2 is

the number of entanglement segments per dilated segment. Among N entanglement segments of the

chain, N* segments (one for each dilated segment) remain as independent segments specifying the

spatial position of the dilated segments, so that the number of entanglement segments to be involved

in the simultaneous CR-equilibration is given by

g ¼ N � N=b*þ 1 ð29Þ

Here, the extra factor of ‘‘1’’ has been introduced to satisfy two extreme conditions, g¼N for b*¼N
(for CR-equilibration of all entanglement segments) and g¼1 for b*¼1 (for the case of no dilation).

The extra factor is necessary to satisfy those conditions but hardly affects the result of the following

analysis because the analysis gives g� 1 for large N.

For the reptation (after CLF) along the longitudinal motional path tube of the diameter a* to

occur in time, the characteristic time for the simultaneous CR-equilibration of g entanglement

segments, ssim-CR, should not exceed the longest dielectric relaxation time s½e�1;m corresponding to

this reptation. This ssim-CR is dependent on g and thus on b* (¼{a*/a}2); cf. Eq. 29. Because the tube

would be dilated to the maximum possible diameter, b* for a linear PI chain in the monodisperse

bulk can be determined from a condition,

ssim-CR ¼ s e½ �
1;m ð30Þ

The simultaneous CR-equilibration of g entanglement segments in the monodisperse bulk

corresponds to p*-th CR–Rouse mode therein, with the mode index p* being specified as37

1

p*
¼ ðN � 2Þgþ 1

ðN � 1Þ2
�

g

N
for N � 1

� �
ð31Þ

For N � 1, p* is given by N/g as simply expected from the number of entanglement segments

involved between nodes of sinusoidal CR–Rouse eigenfunction. From consideration of two
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extreme conditions, p*¼1 forg¼N and p*¼N�1 (the highest CR–Rouse mode index) forg¼1, the

main expression in Eq. 31 is obtained as a minor correction of the case of N� 1.37 Using p* thus

specified as a function of g and N, ssim-CR is expressed in the CR–Rouse form as

ssim�CR ¼ s e½ �
CR;msin2 p

2N

� �
sin�2 p*p

2N

� �
�

s e½ �
CR;m

p*2
if p*� N

 !
ð32Þ

Here, s½e�CR;m (¼2s½G�CR;m) is the longest dielectric CR time for the monodisperse bulk PI specified

experimentally by Eq. 11 with M1¼M2¼M. From Eqs. 30 and 32 together with the data of s½e�1;m

(¼4.2310�19M3.5 s; determined from the e 00 peak frequency for entangled monodisperse linear PI at

40 8C37), we can evaluate the CR mode index p* and further convert this p* into the number of

entanglement segments involved in the simultaneous CR-equilibration, g (cf. Eq. 31).

The number b* of the entanglement segments per dilated segment of the size a* at t¼ s½e�1;m is

directly obtained from the g value thus determined (cf. Eq. 29). Figure 26 shows changes of b* with

the entanglement number M/Me (¼N) of monodisperse linear PI in bulk. b* gradually decreases

with increasing M/Me but does not reach its asymptote (b*¼ 1) even at M/Me¼ 100. This result

suggests that the dielectric relaxation time s½e�1;m is still affected by the CR/DTD mechanism even in

such a well-entangled state (which gives a proof against CR/DTD-independence of s½e�1;m argued in

the literature22). More importantly, b* defined for the longitudinal motional path of the chain is well

below the number bl @ 3 of the laterally equilibrated entanglement segments. This difference

between b* and bl lends support to the hypothesis of the dual structure of the tube illustrated in

Figure 25: a* ¼ a b*1/2 , a0 ¼ ab1=2
l in the time scale of terminal relaxation so that the tube

specifying the longitudinal motional path of the chain wriggles laterally in the wider tube (with the

diameter a0), the latter describing the extra decay of viscoelastic l(t) due to DTD.

Now we examine the dielectric s½e�1;b=s
½e�
1;m ratio of linear PI probe in the high-M matrix (PI 1.1M)

and in the monodisperse bulk. Because the local friction of the entanglement segment, fe, is the

same in these two environments, this ratio is simply given by

s e½ �
1;b

s e½ �
1;m

¼ b*1:5 ð33Þ

(Note that s½e�1 � feM
3.5/M1:5

e;eff and b* is equivalent to the ratio of the effective entanglement

molecular weight for the chain motion, Me,eff, in the monodisperse bulk and in the high-M matrix.)

The s½e�1;b=s
½e�
1;m ratio thus evaluated from b* (Figure 26) is shown in the top panel of Figure 24 with the

FIG. 26. — Number b* of the entanglement segments per dilated segment of the size a* at the longest dielectric relaxation

time s½e�1;m experimentally evaluated through CR–Rouse analysis for monodisperse linear PI at 40 8C. Data are taken from

Matsumiya et al.37 with permission. For further detail, see text.
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red curve. This curve excellently describes the s½e�1;b=s
½e�
1;m data for the moderately- to well-entangled

PI probes (green circles).

Furthermore, the viscoelastic relaxation time ratio is simply evaluated as s½G�1;b=s
½G�
1;m¼ 2b*1.5,

because s½G�1;b¼ s½e�1;b in the DTD-free high-M matrix (as noted from the agreement of the G1,b
00 and

e1,b
00 data for short probes; cf. Figure 23) whereas s½G�1;m@s½e�1;m=2 in monodisperse bulk as confirmed

experimentally.24,30,34,35,37 The viscoelastic s½G�1;b=s
½G�
1;m ratio thus deduced, shown with the red curve

in the bottom panel of Figure 24, is surprisingly close to the data (green circles).

The above success of the simple CR–Rouse analysis for the s½e�1;b=s
½e�
1;m and s½G�1;b=s

½G�
1;m ratios, noted

also for star PI40 (for which the motional path tube is wriggling in a partially dilated tube describing

the l(t) data in Figure 16), lends support to the hypothesis of the dual tube structure. It should be

noted that the CR–Rouse analysis for the linear PI chain just considers the consistent coarse-

graining of the length and time scales together with the coherent nature of the reptative motion.

From that success, we expect that the dielectric s½e�1;b=s
½e�
1;m ratio approaches unity, whereas the

viscoelastic s½G�1;b=s
½G�
1;m ratio (¼ 2s½e�1;b=s

½e�
1;m) approaches 2 for the linear PI chain in the high-M limit

(although this limit is not covered by experiments). This behavior of the viscoelastic s½G�1;b=s
½G�
1;m ratio

corresponds to the Viovy–Rubinstein–Colby62 (VRC) scenario considering reptation along the

undilated tube that laterally wriggles in the dilated tube. We also note a consequence of this VRC

scenario for highly entangled blends of linear chains: we expect that the terminal viscoelastic

relaxation of concentrated long chains therein is not accelerated by the short chains but the decrease

of its intensity (decrease of the long–long entanglement plateau modulus at low x) scales as t1þd
2

with d@ 1.3, whereas the terminal viscoelastic relaxation of the short chain is retarded by the long

chains (by a factor of 2 if the short chain is dilute). Indeed, this expectation is in accord with the G*

data of highly entangled polybutadiene blends reported by Struglinski and Graessley (see figure 9 of

Struglinski and Graessley63).

F. COMMENTS ON RECENT THEORETICAL MODEL/ANALYSIS

This article adopts an experimental viewpoint as much as possible to review the results of

analysis of the viscoelastic and dielectric data reflecting the CR/DTD process. Nevertheless, it is

also informative to add brief comments for recent theoretical model/analysis of the CR/DTD

process60,61,64,65 and for a feature of the interchain constraints (observed as the entanglement) 66–70

that can be related to the tube dilation exponent. Those comments are summarized below.

1. Tube Dilation Exponent and Feature of Interchain Constraint. — The value of the tube

dilation exponent d has been a long-standing subject of theoretical discussion.60,61 Van Ruymbeke

and coworkers60 focused on blends of long and short linear chains to conclude, from a theoretical

argument for the binary nature of entanglement (resulting from the pair-wise constraint between the

chains), that d should be 1 just after the relaxation of entanglement of the long chain with the short

chain. They also considered that the CR-activated tension re-equilibration26 follows this long–short

entanglement relaxation to effectively increase d up to 4/3 (@ 1.3).60 Their model, deduced from

this consideration, well describes the viscoelastic data of the PI 308k/PI 21k blends (cf. Figure 14 of

this article) by using the dielectric data as the reference.60 Later, they refined their model based on

the time marching algorithm, and this refined model describes both dielectric and viscoelastic data

of the PI 308k/PI 21k blends simultaneously (i.e., without using the reference data) as well as

viscoelastic data of other blends.64

Larson and coworkers61 examined the terminal viscoelastic relaxation time of ‘‘solutions’’ of

high-M monodisperse star polybutadienes (PB) in much shorter, unentangled PB. They focused on

very strong dependence of this relaxation time on an effective number of entanglements per star

arm, Narm¼td
2Marm=Me�bulk with t2 being the volume fraction of the star, and concluded that the

relaxation time is more universally dependent on Narm calculated with d¼1 than on Narm with d¼4/
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3. This conclusion suggests that the terminal relaxation of star PB solutions is better described with

d¼1 rather than with d¼4/3, although a considerable scatter (by a factor of~10) is noted for the

relaxation times for different sets of Marm and t2 giving the same value of Narm for d¼1; see figures

9–12 of Larson et al.61 (where several different values of Marm were examined for each star PB

sample).

We note an important difference in the d values explained above: for the entangled blends of

linear PI chains, van Ruymbeke and coworkers60,64 deduced an increase of the effective d from 1 to

4/3 with increasing t, namely, the effective d value of 4/3 in the terminal relaxation regime. In

contrast, for the entangled star PB solutions, Larson and coworkers61 deduced d¼1 in the terminal

regime. This difference might reflect dual (dynamic and static) aspects of the dilation exponent, as

discussed by Larson and coworkers.61 At the same time, one might also suspect that the d value

changes with either the chemical structure or the topological architecture (or both) of polymers. The

data for highly entangled blends of linear PB (chemically identical to the star PB examined by

Larson and coworkers61) unequivocally suggest d@ 1.3 in the terminal regime; see the data for 41L/

435L blends in figures 9 and 12 of Struglinski and Graessley.63 Thus, the d value might change with

the topological architecture of the chain, or more specifically, with the basic mechanism of

relaxation (reptation or arm retraction) determined by this architecture, as judged from the

difference of the d values for the linear PI blends and the star PB solutions. A further study is desired

for this problem.

Now, we turn our attention to a correlation between the d value deduced by van Ruymbeke and

coworkers,60,64 d¼1 and 4/3 at short and long t, and the d value (¼1.3) incorporated in the partial-

DTD picture explained in this article. These two sets of the d values are not necessarily contradicting

to each other, because the partial-DTD modulus lp-DTD(t) in this picture is affected by the d value

only in a range of t where bf-DTD(t)¼ {u0(t)}�d � bCR(t) (cf. Eq. 23). This point can be further

examined for PI blends with small t2, for example, the PI 308k/PI 21k blend with t2¼0.1 examined

in Figures 17 and 21. In a wide range of t where the short PI 21k chains in the blend have fully
relaxed but the long PI 308k chains still exhibit a plateau of l(t) due to the entanglement among

themselves, bf-DTD(t) exceeds bCR,2(t) of the long chain (cf. Figure 21) so that the partial-DTD

modulus lp-DTD(t), well mimicking the l(t) data, is significantly larger than the full-DTD modulus

lf-DTD(t) (cf. Figure 17). In that range of t, lp-DTD(t) is contributed only from the long chain and

expressed as35 lp-DTD(t)¼u0(t)/bCR,2(t). This expression does not include the dilation exponent,

but we can still define an apparent exponent dapp for lp-DTD(t) and bCR,2(t) as

lp�DTDðtÞ ¼ u0ðtÞf g1þdapp ; bCR;2ðtÞ ¼ u0ðtÞf g�dapp ð34Þ

This dapp changes with t, and lp-DTD(t) and bCR,2(t) of the PI 308k/PI 21k blend with t2¼0.1 (shown

in Figures 17 and 21) give dapp¼ 0.98 and 1.3 at t¼ 10�2 and 10�1 s, respectively. Namely, the

partial-DTD picture for the PI blend gives dapp that increases from ‹1 to 1.3 with time (after the

relaxation of the short chain component), which is essentially the same as the evolution of d
considered in the model by van Ruymbeke and coworkers.60,64 Nevertheless, it should be

emphasized that dapp is just an apparent dilation exponent, and the partial-DTD picture does not give

the power-law relationship, Eq. 34, in the range of t where bf-DTD(t) . bCR,2(t).
Concerning this point, we would like to add that the experimentally observed difference of the

CR relaxation behavior of chemically different PI and PS probes (Figures 11 and 12) well fits in the

partial-DTD picture through the chemistry-dependent number z of local constraints per

entanglement considered in Graessley’s CR–Rouse model.42 It is not clear if this difference of

the CR behavior due only to the chemical difference is straightforwardly deduced within the CR–

Rouse model given that the entanglement exclusively results from the binary (pair-wise) constraint

corresponding to d¼1.
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For this problem, it would be informative to briefly visit the results of molecular dynamics

(MD) simulations. Everaers and coworkers66 made the primitive path analysis based on the MD

simulation to visualize interchain hooking (or nodes) attributable to the binary entanglement and

demonstrated good agreements between the plateau modulus deduced from this analysis and the

literature data. Such nodes, defined in a static (and statistical) sense, are observed also in

simulations with different algorithms, for example, the ‘‘contour reduction topological analysis’’ by

Tzoumanekas and Theodorou67 and the ‘‘direct topological analysis’’ by Kröger and coworkers.68

At the same time, the simulation by Likhtman and Ponmurugan69 revealed that (coarse-grained)

chains form mutual contacts in a dynamic sense at many places along their backbone, and these

contacts are tight and long-lived. Likhtman70 further showed that those contacts involve both binary

and ternary entanglements.

Summarizing these simulation results, one may arrive at a hypothetical molecular view that the

interchain constraint has static and dynamic aspects, and both binary and multiple-chain constraints

can be dynamically observed as the entanglement: probabilities of forming respective constraints

may change according to the chemical structure and topological architecture of the chain. Within

the context of the tube model incorporating the CR/DTD mechanism, this molecular view could

lead to the (effective) dilation exponent d . 1 in the terminal relaxation regime where both binary

and multiple-chain constraints loosen to dynamically dilate the tube. This possible scenario of d is

an interesting subject of research, but a further discussion of it goes well beyond the scope of this

article emphasizing an experimental viewpoint for analysis of the viscoelastic and dielectric data. A

rigid theoretical study is desired for the behavior of d (and for the underlying molecular view).

2. Duality in Description of Reptation along Tube. — In relation to the reptation along the

motional path tube (cf. Figure 25), a comment needs to be made for the local friction of the

entanglement segment, fe. In the CR–Rouse analysis (Eqs. 29–33), fe is treated as the intrinsic

friction being identical in the high-M matrix (CR/DTD-free environment) and in the monodisperse

bulk. This treatment is consistent with the definition of the friction for the chain motion along the

motional path tube having the diameter a*. However, as an equivalent treatment, we may also

introduce an effective friction fe,eff for the chain motion along the partially/fully dilated tube having

the diameter a0 (.a*). This dilated tube specifies the range of lateral equilibration of the

entanglement segments corresponding to the DTD relaxation of viscoelastic l(t), and the motion

along the dilated tube requires a waiting time tw for an extra tension equilibration along it. This

waiting time can be cast as an increase of fe,eff (.fe). Thus, there is a duality in description of the

chain motion, for example, reptation along the motional path tube with the diameter a* (cf. Figure

25) occurring with the intrinsic fe, or, reptation along the dilated tube with the diameter a0 occurring

with fe,eff. These two types of reptative motion should give the same l(t) at t . tw and the same

terminal relaxation time.

In fact, an analysis of the waiting time tw in blends of linear PI well describes the relaxation time

of the long and short chains therein38 (to an extent similar to that seen in Figure 24). More

quantitatively, van Ruymbeke and coworkers64 analyzed tw in their model to excellently describe

not only the relaxation time but also the frequency dependence of the G* and e 00 data of those linear

PI blends. They further extended their model to entangled blends of star and linear chains (while

keeping the analysis of tw) to describe the G* data of the blends.65 Read and coworkers54 made

detailed analysis of fe,eff (equivalent to tw) to specify several different regimes to be added in the

Viovy–Rubinstein–Colby (VRC) diagram62 and compared their results with experimental data and

simulation results. Their analysis needed a hypothetical reference state where the intrinsic fe

governs the reptation along the tube; this reference state cannot be the monodisperse bulk wherein

the CR/DTD mechanism is already operating. Except this point, their analysis allows us to test

differences in the modes of relaxation in the VRC diagram in a purely experimental way.
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The above duality in description of chain motion along the dilated tube is a natural consequence

of coarse-graining.1 That is, if we average the chain conformation over every tw, the chain would

look like a fuzzy thread with the lateral width of a0, and its motion would look like 1D motion along

the dilated tube. Furthermore, the bead-spring (Rouse) model underlying the tube model gives the

same terminal relaxation behavior irrespective of the choice of the bead size as long as the chain is

composed of many beads, which is regarded as the duality in the simplest form. Such a duality in

description of the chain motion is important in polymer physics and deserves further attention.

III. CONCLUDING REMARKS

This review article adopts an experimental viewpoint as much as possible to summarize results

of analysis of linear viscoelastic and dielectric data (mostly for PI) and discusses some detailed

aspects of the entanglement-loosening mechanism resolved from the analysis. This loosening

mechanism, known as the constraint release (CR) and dynamic tube dilation (DTD) mechanisms in

the tube model, is unequivocally operating in the monodisperse bulk systems of linear and star PI

chains, as revealed from simple comparison of their viscoelastic and dielectric data.

Based on this experimental confirmation of the CR/DTD mechanisms, the survival fraction of

the dilated tube u0(t) is obtained from analysis of the dielectric data, and comparison of u 0(t) and the

viscoelastic data indicates validity of the molecular picture of partial-DTD. In this molecular

picture, the tube for a given probe chain dilates up to the maximum level allowed by motion of the

tube-forming chains and by the CR–Rouse motion of the probe itself. If the probe motion occurs in

time over the maximum length scale allowed by the motion of the tube-forming chains, the partial-

DTD picture reduces to the full-DTD picture wherein the relaxed portion of the chains behaves as a

solvent. In this way, the partial-DTD picture makes consistent coarse-graining of the time and

length scales, and the diameter of the partially dilated tube represents a spatial length scale of CR-

equilibration of the entanglement segments in the direction lateral to the probe backbone.

Furthermore, analysis of the dielectric data of linear PI probe in the DTD-free environment (in

long PI matrix) suggests that the dilated tube in monodisperse systems has a dual structure, the

partially dilated tube explained above and a thinner, motional path tube wriggling in the partially

dilated tube. The motional path tube is deduced by considering the consistent coarse-graining of the

time and length scales together with the coherence of the longitudinal motion of the probe chain.

The dielectric relaxation time of monodisperse PI in bulk is well described as the time required for

the longitudinal chain motion along the path tube, and the viscoelastic relaxation time is described

as the time for this motion combined with the lateral equilibration of the entanglement segments

(DTD).

The comparison of the viscoelastic and dielectric data allows us to experimentally resolve the

detailed features explained above. Nevertheless, some theoretical uncertainties remain, for

example, for the molecular origin(s) of the difference in the CR relaxation time of chemically

different chains (PI and PS) and for the value of the tube dilation exponent d. These uncertainties are

important/interesting subjects of future work.
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